Estimating network parameters for selecting community detection algorithms

Leto Peel
{"title":"Estimating network parameters for selecting community detection algorithms","authors":"Leto Peel","doi":"10.1109/ICIF.2010.5712065","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of algorithm selection for community detection. The aim of community detection is to identify sets of nodes in a network which are more interconnected relative to their connectivity to the rest of the network. A large number of algorithms have been developed to tackle this problem, but as with any machine learning task there is no “one-size-fits-all” and each algorithm excels in a specific part of the problem space. This paper examines the performance of algorithms developed for weighted networks against those using unweighted networks for different parts of the problem space (parameterised by the intra/inter community links). It is then demonstrated how the choice of algorithm (weighted/unweighted) can be made based only on the observed network.","PeriodicalId":341446,"journal":{"name":"2010 13th International Conference on Information Fusion","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2010.5712065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

This paper considers the problem of algorithm selection for community detection. The aim of community detection is to identify sets of nodes in a network which are more interconnected relative to their connectivity to the rest of the network. A large number of algorithms have been developed to tackle this problem, but as with any machine learning task there is no “one-size-fits-all” and each algorithm excels in a specific part of the problem space. This paper examines the performance of algorithms developed for weighted networks against those using unweighted networks for different parts of the problem space (parameterised by the intra/inter community links). It is then demonstrated how the choice of algorithm (weighted/unweighted) can be made based only on the observed network.
估计网络参数,选择社区检测算法
本文研究了社区检测的算法选择问题。社区检测的目的是识别网络中相对于其与网络其余部分的连通性更紧密的节点集。已经开发了大量的算法来解决这个问题,但与任何机器学习任务一样,没有“放之四海而皆准”的算法,每种算法都在问题空间的特定部分表现出色。本文研究了针对问题空间的不同部分(由社区内/社区间链接参数化)使用加权网络开发的算法与使用非加权网络的算法的性能。然后演示了如何仅基于观察到的网络来选择算法(加权/未加权)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信