AI-based Customer Behavior Analytics System using Edge Computing Device

Prajogo Atmaja, Dalta Imam Maulana, T. Adiono
{"title":"AI-based Customer Behavior Analytics System using Edge Computing Device","authors":"Prajogo Atmaja, Dalta Imam Maulana, T. Adiono","doi":"10.1109/ICEIC49074.2020.9051138","DOIUrl":null,"url":null,"abstract":"Customer behavior can be analyzed using an artificial intelligence algorithm, specifically object detection algorithm. However, the implementations are usually either using a cloud computing-based system or a high-end PC. These existing solutions require a high-traffic internet connection or a large-sized GPU. In this paper, we propose a system implementation using an edge-computation approach. The purpose of this paper is to port an existing deep learning-based in-store traffic monitoring system that is used for evaluating retail performance into an embedded computer, specifically NVIDIA Jetson Nano. This is done in order to minimize the cost, power consumption, and space needed to implement this system on a larger scale. The system can run in 10 frames per second using Single Shot Detector MobileNet v2 architecture.","PeriodicalId":271345,"journal":{"name":"2020 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC49074.2020.9051138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Customer behavior can be analyzed using an artificial intelligence algorithm, specifically object detection algorithm. However, the implementations are usually either using a cloud computing-based system or a high-end PC. These existing solutions require a high-traffic internet connection or a large-sized GPU. In this paper, we propose a system implementation using an edge-computation approach. The purpose of this paper is to port an existing deep learning-based in-store traffic monitoring system that is used for evaluating retail performance into an embedded computer, specifically NVIDIA Jetson Nano. This is done in order to minimize the cost, power consumption, and space needed to implement this system on a larger scale. The system can run in 10 frames per second using Single Shot Detector MobileNet v2 architecture.
基于人工智能的边缘计算设备客户行为分析系统
客户行为可以使用人工智能算法进行分析,特别是对象检测算法。然而,实现通常要么使用基于云计算的系统,要么使用高端PC。这些现有的解决方案需要高流量的互联网连接或大尺寸的GPU。在本文中,我们提出了一个使用边缘计算方法的系统实现。本文的目的是将现有的用于评估零售业绩的基于深度学习的店内流量监控系统移植到嵌入式计算机中,特别是NVIDIA Jetson Nano。这样做是为了最大限度地降低成本、功耗和在更大范围内实现该系统所需的空间。该系统采用单镜头检测器MobileNet v2架构,以每秒10帧的速度运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信