{"title":"Minimum switching limit cycle oscillations for systems of coupled double integrators","authors":"A. Garulli, Antonio Giannitrapani, Mirko Leomanni","doi":"10.1109/CDC.2014.7040114","DOIUrl":null,"url":null,"abstract":"In this paper, we study the limit cycle oscillations of multiple double integrators with coupled dynamics, subject to a constant disturbance term and switching inputs. Such systems arise in a variety of control problems where the minimization of both fuel and number of input transitions is a key requirement. The problem of finding the minimum switching limit cycle, among all the fuel-optimal solutions satisfying given state constraints, is addressed. Starting from well known results available for a single double integrator, two suboptimal solutions are provided for the multivariable case. First, an analytic upper bound on the number of input switchings is derived. Then, a less conservative numerical solution exploiting the additional degrees of freedom provided by the phases of the limit cycles is presented. The proposed techniques are compared on two simulation examples.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7040114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
In this paper, we study the limit cycle oscillations of multiple double integrators with coupled dynamics, subject to a constant disturbance term and switching inputs. Such systems arise in a variety of control problems where the minimization of both fuel and number of input transitions is a key requirement. The problem of finding the minimum switching limit cycle, among all the fuel-optimal solutions satisfying given state constraints, is addressed. Starting from well known results available for a single double integrator, two suboptimal solutions are provided for the multivariable case. First, an analytic upper bound on the number of input switchings is derived. Then, a less conservative numerical solution exploiting the additional degrees of freedom provided by the phases of the limit cycles is presented. The proposed techniques are compared on two simulation examples.