Object-Based Perspective Transformation Data Augmentation for Object Detection

Zibo Nie, Jianjun Cao, Nianfeng Weng, Xu Yu, Mengda Wang
{"title":"Object-Based Perspective Transformation Data Augmentation for Object Detection","authors":"Zibo Nie, Jianjun Cao, Nianfeng Weng, Xu Yu, Mengda Wang","doi":"10.1109/FAIML57028.2022.00043","DOIUrl":null,"url":null,"abstract":"Perspective transformation can mimic the perspective phenomenon in captured images, while few researches focused on utilizing perspective transformation to augment image data. To well exploit its potential in data augmentation, a novel object-based perspective transformation data augmentation framework is proposed in this paper. First, this framework automatically cuts out objects from images based on bounding boxes provided by corresponding annotations. Next, a simulated random perspective transformation is performed on only those cut objects rather than the whole images. The final step consists of the combination of transformed objects and backgrounds, together with calculation of new annotation. Our framework can generate new images by mimicking the perspective phenomenon caused by different orientations of objects and can also introduce new backgrounds at the same time, hence the further augmentation towards insufficient or imbalanced image data without requirements of additional manual manipulations. Experiments are carried out on the Pascal VOC2007 datasets and the results show the effectiveness of our framework on insufficient or imbalanced datasets.","PeriodicalId":307172,"journal":{"name":"2022 International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FAIML57028.2022.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Perspective transformation can mimic the perspective phenomenon in captured images, while few researches focused on utilizing perspective transformation to augment image data. To well exploit its potential in data augmentation, a novel object-based perspective transformation data augmentation framework is proposed in this paper. First, this framework automatically cuts out objects from images based on bounding boxes provided by corresponding annotations. Next, a simulated random perspective transformation is performed on only those cut objects rather than the whole images. The final step consists of the combination of transformed objects and backgrounds, together with calculation of new annotation. Our framework can generate new images by mimicking the perspective phenomenon caused by different orientations of objects and can also introduce new backgrounds at the same time, hence the further augmentation towards insufficient or imbalanced image data without requirements of additional manual manipulations. Experiments are carried out on the Pascal VOC2007 datasets and the results show the effectiveness of our framework on insufficient or imbalanced datasets.
面向目标检测的基于对象的透视变换数据增强
透视变换可以模拟捕获图像中的透视现象,但利用透视变换增强图像数据的研究很少。为了充分发挥其在数据增强方面的潜力,本文提出了一种新的基于对象的透视转换数据增强框架。首先,该框架根据相应注释提供的边界框自动从图像中裁剪对象。接下来,模拟随机透视变换只对那些被切割的物体而不是整个图像执行。最后一步是将变换后的对象和背景进行组合,并计算新的标注。我们的框架可以通过模拟物体的不同方向所产生的透视现象来生成新的图像,同时也可以引入新的背景,从而在不需要额外的人工操作的情况下,对图像数据不足或不平衡的情况进行进一步的增强。在Pascal VOC2007数据集上进行了实验,结果表明我们的框架在不充分或不平衡数据集上是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信