Surrogate-assisted microscopic traffic simulation-based optimisation of routing parameters

Bernhard Werth, Erik Pitzer, Christian Backfrieder, G. Ostermayer, M. Affenzeller
{"title":"Surrogate-assisted microscopic traffic simulation-based optimisation of routing parameters","authors":"Bernhard Werth, Erik Pitzer, Christian Backfrieder, G. Ostermayer, M. Affenzeller","doi":"10.1504/IJSPM.2019.101006","DOIUrl":null,"url":null,"abstract":"Reactive and predictive routing algorithms have to work fast and reliably for a large number of traffic participants. Therefore, simple rules and thresholds guide the routing decisions rather than extensive data collection and machine learning. In this paper, we optimise some of the thresholds governing the behaviour of a reactive and predictive routing algorithm by using the microscopic traffic simulator TraffSim. Microscopic traffic simulation is more exact than its macroscopic counterpart and very well suited to test the efficiency of a reactive and predictive routing algorithm. Unfortunately, it is also tremendously more computationally expensive, impairing the applicability of 'conventional' heuristic optimisation techniques like genetic algorithms or evolution strategies. Extensive use of surrogate models in an optimisation procedure is a promising alternative. Several variations of the efficient global optimisation (EGO) algorithm are tested and compared. Furthermore, a new type of surrogate model geared towards the parameter optimisation is presented.","PeriodicalId":266151,"journal":{"name":"Int. J. Simul. Process. Model.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Simul. Process. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSPM.2019.101006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Reactive and predictive routing algorithms have to work fast and reliably for a large number of traffic participants. Therefore, simple rules and thresholds guide the routing decisions rather than extensive data collection and machine learning. In this paper, we optimise some of the thresholds governing the behaviour of a reactive and predictive routing algorithm by using the microscopic traffic simulator TraffSim. Microscopic traffic simulation is more exact than its macroscopic counterpart and very well suited to test the efficiency of a reactive and predictive routing algorithm. Unfortunately, it is also tremendously more computationally expensive, impairing the applicability of 'conventional' heuristic optimisation techniques like genetic algorithms or evolution strategies. Extensive use of surrogate models in an optimisation procedure is a promising alternative. Several variations of the efficient global optimisation (EGO) algorithm are tested and compared. Furthermore, a new type of surrogate model geared towards the parameter optimisation is presented.
基于代理辅助微观交通仿真的路由参数优化
响应式和预测式路由算法必须能够快速、可靠地处理大量的流量参与者。因此,简单的规则和阈值指导路由决策,而不是广泛的数据收集和机器学习。在本文中,我们通过使用微观交通模拟器TraffSim优化了控制响应和预测路由算法行为的一些阈值。微观交通仿真比宏观交通仿真更为精确,非常适合于测试响应式和预测式路由算法的效率。不幸的是,它的计算成本也非常高,削弱了“传统”启发式优化技术(如遗传算法或进化策略)的适用性。在优化过程中广泛使用代理模型是一个很有前途的选择。对几种不同的高效全局优化算法进行了测试和比较。在此基础上,提出了一种面向参数优化的新型代理模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信