Combinatorial Algorithms for General Linear Arrow-Debreu Markets

B. Chaudhury, K. Mehlhorn
{"title":"Combinatorial Algorithms for General Linear Arrow-Debreu Markets","authors":"B. Chaudhury, K. Mehlhorn","doi":"10.4230/LIPIcs.FSTTCS.2018.26","DOIUrl":null,"url":null,"abstract":"We present a combinatorial algorithm for determining the market clearing prices of a general linear Arrow-Debreu market, where every agent can own multiple goods. The existing combinatorial algorithms for linear Arrow-Debreu markets consider the case where each agent can own all of one good only. We present an $\\tilde{\\mathcal{O}}((n+m)^7 \\log^3(UW))$ algorithm where $n$, $m$, $U$ and $W$ refer to the number of agents, the number of goods, the maximal integral utility and the maximum quantity of any good in the market respectively. The algorithm refines the iterative algorithm of Duan, Garg and Mehlhorn using several new ideas. We also identify the hard instances for existing combinatorial algorithms for linear Arrow-Debreu markets. In particular we find instances where the ratio of the maximum to the minimum equilibrium price of a good is $U^{\\Omega(n)}$ and the number of iterations required by the existing iterative combinatorial algorithms of Duan, and Mehlhorn and Duan, Garg, and Mehlhorn are high. Our instances also separate the two algorithms.","PeriodicalId":175000,"journal":{"name":"Foundations of Software Technology and Theoretical Computer Science","volume":"27 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Software Technology and Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSTTCS.2018.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a combinatorial algorithm for determining the market clearing prices of a general linear Arrow-Debreu market, where every agent can own multiple goods. The existing combinatorial algorithms for linear Arrow-Debreu markets consider the case where each agent can own all of one good only. We present an $\tilde{\mathcal{O}}((n+m)^7 \log^3(UW))$ algorithm where $n$, $m$, $U$ and $W$ refer to the number of agents, the number of goods, the maximal integral utility and the maximum quantity of any good in the market respectively. The algorithm refines the iterative algorithm of Duan, Garg and Mehlhorn using several new ideas. We also identify the hard instances for existing combinatorial algorithms for linear Arrow-Debreu markets. In particular we find instances where the ratio of the maximum to the minimum equilibrium price of a good is $U^{\Omega(n)}$ and the number of iterations required by the existing iterative combinatorial algorithms of Duan, and Mehlhorn and Duan, Garg, and Mehlhorn are high. Our instances also separate the two algorithms.
一般线性箭头-德布鲁市场的组合算法
我们提出了一种确定一般线性Arrow-Debreu市场出清价格的组合算法,其中每个代理人可以拥有多个商品。现有的线性Arrow-Debreu市场组合算法考虑的是每个代理人只能拥有一种商品的情况。我们提出了一个$\tilde{\mathcal{O}}((n+m)^7 \log^3(UW))$算法,其中$n$, $m$, $U$和$W$分别表示市场上的代理数量,商品数量,最大积分效用和任何商品的最大数量。该算法对Duan、Garg和Mehlhorn的迭代算法进行了改进,采用了一些新的思想。我们还识别了线性Arrow-Debreu市场的现有组合算法的硬实例。特别是,我们发现商品的最大与最小均衡价格之比为$U^{\Omega(n)}$的实例,并且现有的Duan, Mehlhorn和Duan, Garg和Mehlhorn的迭代组合算法所需的迭代次数很高。我们的实例也分离了这两种算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信