MINIMUM INFORMATION UPDATING WITH SPECIFIED MARGINALS IN PROBABILISTIC EXPERT SYSTEMS

M. Kuroda, Z. Geng
{"title":"MINIMUM INFORMATION UPDATING WITH SPECIFIED MARGINALS IN PROBABILISTIC EXPERT SYSTEMS","authors":"M. Kuroda, Z. Geng","doi":"10.5183/JJSCS1988.12.41","DOIUrl":null,"url":null,"abstract":"A probability-updating method in probabilistic expert systems is considered in this paper based on the minimum discrimination information. Here, newly acquired information is taken as the latest true marginal probabilities, not as newly observed data with the same weight as previous data. Posterior probabilities are obtained by updating prior probabilities subject to the latest true marginals. To apply to probabilistic expert systems, we extend Ku and Kullback(1968)’s the minimum discrimination information method for saturated models to log-linear models, discuss localization of global updating, and show that Deming and Stephan’s iterative procedure can also be used to find the posterior probabilities. Our updating method can also be used to handle uncertain evidences in probabilistic expert systems.","PeriodicalId":338719,"journal":{"name":"Journal of the Japanese Society of Computational Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japanese Society of Computational Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5183/JJSCS1988.12.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A probability-updating method in probabilistic expert systems is considered in this paper based on the minimum discrimination information. Here, newly acquired information is taken as the latest true marginal probabilities, not as newly observed data with the same weight as previous data. Posterior probabilities are obtained by updating prior probabilities subject to the latest true marginals. To apply to probabilistic expert systems, we extend Ku and Kullback(1968)’s the minimum discrimination information method for saturated models to log-linear models, discuss localization of global updating, and show that Deming and Stephan’s iterative procedure can also be used to find the posterior probabilities. Our updating method can also be used to handle uncertain evidences in probabilistic expert systems.
概率专家系统中具有指定边际的最小信息更新
提出了一种基于最小识别信息的概率专家系统概率更新方法。在这里,新获得的信息被作为最新的真实边际概率,而不是作为与之前数据具有相同权重的新观测数据。后验概率是根据最新的真实边际更新先验概率得到的。为了应用于概率专家系统,我们将Ku和Kullback(1968)的饱和模型的最小区别信息方法推广到对数线性模型,讨论了全局更新的局部化问题,并证明了Deming和Stephan的迭代方法也可以用于求后验概率。该方法也可用于处理概率专家系统中的不确定证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信