Fundamental Limits of Distributed Optimization over Multiple Access Channel

Shubham K. Jha, Prathamesh Mayekar
{"title":"Fundamental Limits of Distributed Optimization over Multiple Access Channel","authors":"Shubham K. Jha, Prathamesh Mayekar","doi":"10.1109/ITW55543.2023.10161622","DOIUrl":null,"url":null,"abstract":"We consider distributed optimization over a d-dimensional space, where K remote clients send coded gradient estimates over an additive Gaussian Multiple Access Channel (MAC) with noise variance $\\sigma _z^2$. Furthermore, the codewords from the K clients must satisfy the average power constraint of P, resulting in a signal-to-noise ratio (SNR) of $KP/\\sigma _z^2$. In this paper, we study the fundamental limits imposed by MAC on the convergence rate of any distributed optimization algorithm and design optimal communication schemes to achieve these limits. Our first result is a lower bound for the convergence rate showing that compared to the centralized setting, communicating over a MAC imposes a slowdown of $\\sqrt {d/\\frac{1}{2}\\log (1 + {\\text{SNR}})}$ on any protocol. Next, we design a computationally tractable digital communication scheme that matches the lower bound to a logarithmic factor in K when combined with a projected stochastic gradient descent algorithm. At the heart of our communication scheme is a careful combination of several compression and modulation ideas such as quantizing along random bases, Wyner-Ziv compression, modulo-lattice decoding, and amplitude shift keying. We also show that analog coding schemes, which are popular due to their ease of implementation, can give close to optimal convergence rates at low SNR but experience a slowdown of roughly $\\sqrt d$ at high SNR.","PeriodicalId":439800,"journal":{"name":"2023 IEEE Information Theory Workshop (ITW)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW55543.2023.10161622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider distributed optimization over a d-dimensional space, where K remote clients send coded gradient estimates over an additive Gaussian Multiple Access Channel (MAC) with noise variance $\sigma _z^2$. Furthermore, the codewords from the K clients must satisfy the average power constraint of P, resulting in a signal-to-noise ratio (SNR) of $KP/\sigma _z^2$. In this paper, we study the fundamental limits imposed by MAC on the convergence rate of any distributed optimization algorithm and design optimal communication schemes to achieve these limits. Our first result is a lower bound for the convergence rate showing that compared to the centralized setting, communicating over a MAC imposes a slowdown of $\sqrt {d/\frac{1}{2}\log (1 + {\text{SNR}})}$ on any protocol. Next, we design a computationally tractable digital communication scheme that matches the lower bound to a logarithmic factor in K when combined with a projected stochastic gradient descent algorithm. At the heart of our communication scheme is a careful combination of several compression and modulation ideas such as quantizing along random bases, Wyner-Ziv compression, modulo-lattice decoding, and amplitude shift keying. We also show that analog coding schemes, which are popular due to their ease of implementation, can give close to optimal convergence rates at low SNR but experience a slowdown of roughly $\sqrt d$ at high SNR.
多址信道分布式优化的基本限制
我们考虑在d维空间上的分布式优化,其中K个远程客户端在具有噪声方差$\sigma _z^2$的加性高斯多址信道(MAC)上发送编码梯度估计。此外,来自K个客户端的码字必须满足P的平均功率约束,导致信噪比(SNR)为$KP/\sigma _z^2$。本文研究了MAC对任何分布式优化算法收敛速度的基本限制,并设计了达到这些限制的最优通信方案。我们的第一个结果是收敛速率的下界,表明与集中式设置相比,通过MAC进行通信对任何协议都施加了$\sqrt {d/\frac{1}{2}\log (1 + {\text{SNR}})}$的减速。接下来,我们设计了一个计算上易于处理的数字通信方案,当与投影随机梯度下降算法相结合时,该方案将下界匹配到K的对数因子。我们的通信方案的核心是几个压缩和调制思想的精心组合,如随机基量化、Wyner-Ziv压缩、模晶格解码和幅度移位键控。我们还表明,由于易于实现而受到欢迎的模拟编码方案可以在低信噪比下提供接近最佳的收敛速率,但在高信噪比下会经历大约$\sqrt d$的减速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信