The proportional mean decomposition: A bridge between the Gaussian and bernoulli ensembles

Samet Oymak, B. Hassibi
{"title":"The proportional mean decomposition: A bridge between the Gaussian and bernoulli ensembles","authors":"Samet Oymak, B. Hassibi","doi":"10.1109/ICASSP.2015.7178586","DOIUrl":null,"url":null,"abstract":"We consider ill-posed linear inverse problems involving the estimation of structured sparse signals. When the sensing matrix has i.i.d. standard normal entries, there is a full-fledged theory on the sample complexity and robustness properties. In this work, we propose a way of making use of this theory to get good bounds for the i.i.d. Bernoulli ensemble. We first provide a deterministic relation between the two ensembles that relates the restricted singular values. Then, we show how one can get non-asymptotic results with small constants for the Bernoulli ensemble. While our discussion focuses on Bernoulli measurements, the main idea can be extended to any discrete distribution with little difficulty.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider ill-posed linear inverse problems involving the estimation of structured sparse signals. When the sensing matrix has i.i.d. standard normal entries, there is a full-fledged theory on the sample complexity and robustness properties. In this work, we propose a way of making use of this theory to get good bounds for the i.i.d. Bernoulli ensemble. We first provide a deterministic relation between the two ensembles that relates the restricted singular values. Then, we show how one can get non-asymptotic results with small constants for the Bernoulli ensemble. While our discussion focuses on Bernoulli measurements, the main idea can be extended to any discrete distribution with little difficulty.
比例平均分解:高斯系和伯努利系之间的桥梁
我们考虑了涉及结构化稀疏信号估计的不适定线性逆问题。当传感矩阵有i个标准法向项时,对于样本复杂度和鲁棒性已经有了较为完善的理论。在这项工作中,我们提出了一种利用这一理论来获得良好的伯努利系综边界的方法。我们首先给出了两个系综之间的确定性关系,该关系与受限奇异值有关。然后,我们展示了如何得到伯努利系综的小常数的非渐近结果。虽然我们的讨论集中在伯努利测量上,但其主要思想可以很容易地扩展到任何离散分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信