Albert Podusenko, B. V. Erp, Dmitry V. Bagaev, Ismail Senöz, B. Vries
{"title":"Message Passing-based Inference in Switching Autoregressive Models","authors":"Albert Podusenko, B. V. Erp, Dmitry V. Bagaev, Ismail Senöz, B. Vries","doi":"10.23919/eusipco55093.2022.9909828","DOIUrl":null,"url":null,"abstract":"The switching autoregressive model is a flexible model for signals generated by non-stationary processes. Unfortunately, evaluation of the exact posterior distributions of the latent variables for a switching autoregressive model is analytically intractable, and this limits the applicability of switching autoregressive models in practical signal processing tasks. In this paper we present a message passing-based approach for computing approximate posterior distributions in the switching autoregressive model. Our solution tracks approximate posterior distributions in a modular way and easily extends to more complicated model variations. The proposed message passing algorithm is verified and validated on synthetic and acoustic data sets respectively.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The switching autoregressive model is a flexible model for signals generated by non-stationary processes. Unfortunately, evaluation of the exact posterior distributions of the latent variables for a switching autoregressive model is analytically intractable, and this limits the applicability of switching autoregressive models in practical signal processing tasks. In this paper we present a message passing-based approach for computing approximate posterior distributions in the switching autoregressive model. Our solution tracks approximate posterior distributions in a modular way and easily extends to more complicated model variations. The proposed message passing algorithm is verified and validated on synthetic and acoustic data sets respectively.