Identification of objects from image regions

Wei Wang, A. Zhang, Yuqing Song
{"title":"Identification of objects from image regions","authors":"Wei Wang, A. Zhang, Yuqing Song","doi":"10.1109/ICME.2003.1220902","DOIUrl":null,"url":null,"abstract":"Over-segmentation could be relieved by adopting a divisive image segmentation model. This also requires the binary classification of whether a segmented region corresponds to a single semantic object. In this paper, we propose a model to address this classification problem, by detecting if a region contains both \"background\" and \"foreground\" regions. When \"background\" and \"foreground\" both present, the region is considered to have multiple objects, otherwise it corresponds to a single object. We implement the model based on certain image features of the region that effectively tell the difference between \"background\" and \"foreground\". Experiments show that our model can effectively perform the classification tasks.","PeriodicalId":118560,"journal":{"name":"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2003.1220902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Over-segmentation could be relieved by adopting a divisive image segmentation model. This also requires the binary classification of whether a segmented region corresponds to a single semantic object. In this paper, we propose a model to address this classification problem, by detecting if a region contains both "background" and "foreground" regions. When "background" and "foreground" both present, the region is considered to have multiple objects, otherwise it corresponds to a single object. We implement the model based on certain image features of the region that effectively tell the difference between "background" and "foreground". Experiments show that our model can effectively perform the classification tasks.
从图像区域中识别物体
采用分裂图像分割模型可以缓解过度分割的问题。这还需要对分割的区域是否对应于单个语义对象进行二值分类。在本文中,我们提出了一个模型来解决这个分类问题,通过检测一个区域是否包含“背景”和“前景”区域。当“背景”和“前景”同时存在时,该区域被认为具有多个对象,否则它对应于单个对象。我们基于该区域的某些图像特征来实现该模型,这些特征可以有效地区分“背景”和“前景”。实验表明,该模型能够有效地完成分类任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信