AUV Path Planning in Strong Current Fields with Less Computing Time and Improving Incompleteness Problem

Feng Wang, Chenlong Li, Wenliang Chen
{"title":"AUV Path Planning in Strong Current Fields with Less Computing Time and Improving Incompleteness Problem","authors":"Feng Wang, Chenlong Li, Wenliang Chen","doi":"10.1109/IFEEA57288.2022.10037978","DOIUrl":null,"url":null,"abstract":"This paper solves the time-optimal path planning for autonomous underwater vehicles (AUVs) in ocean environment with cluttered currents. In this problem, the planner may not find a path in the search space with discrete motion directions, because it leads to a decrease in the available direction. But the search space with the continuous motion directions will greatly increase the computation. To avoid this, the paper presents an approach to improve the lack of discrete motion model by placing Steiner points on each edge. Combining with the ant colony algorithm, the path planner finds the time-optimal path in search space. The effectiveness is verified through simulations using a set of randomly generated current fields.","PeriodicalId":304779,"journal":{"name":"2022 9th International Forum on Electrical Engineering and Automation (IFEEA)","volume":"47 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Forum on Electrical Engineering and Automation (IFEEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFEEA57288.2022.10037978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper solves the time-optimal path planning for autonomous underwater vehicles (AUVs) in ocean environment with cluttered currents. In this problem, the planner may not find a path in the search space with discrete motion directions, because it leads to a decrease in the available direction. But the search space with the continuous motion directions will greatly increase the computation. To avoid this, the paper presents an approach to improve the lack of discrete motion model by placing Steiner points on each edge. Combining with the ant colony algorithm, the path planner finds the time-optimal path in search space. The effectiveness is verified through simulations using a set of randomly generated current fields.
少计算时间的强电流场水下航行器路径规划及改进不完备性问题
本文解决了混杂洋流环境下自主水下航行器(auv)的时间最优路径规划问题。在此问题中,规划器可能无法在运动方向离散的搜索空间中找到路径,因为这会导致可用方向的减少。但是运动方向连续的搜索空间会大大增加计算量。为了避免这种情况,本文提出了一种通过在每条边缘上放置斯坦纳点来改善离散运动模型缺失的方法。路径规划器结合蚁群算法,在搜索空间中寻找时间最优路径。通过一组随机产生的电流场的仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信