A multiresolution approach to trajectory description

Amir Salarpour, Hassan Khotanlou, Mohammad Amin. Mahboubi, S. Daghigh
{"title":"A multiresolution approach to trajectory description","authors":"Amir Salarpour, Hassan Khotanlou, Mohammad Amin. Mahboubi, S. Daghigh","doi":"10.1109/PRIA.2017.7983019","DOIUrl":null,"url":null,"abstract":"Automated object's activity analysis has been and still remains a challenging problem and motion trajectories provide rich spatiotemporal information for this purpose. This paper presents a novel descriptor to analyze object activity based on object trajectories. In the proposed descriptor extraction technique, object's change in direction is extracted in different level of resolution. One of the most important characteristics of the proposed approach is that the descriptor is translation and rotation invariant. We first segment the trajectories based on the absence of changes in direction via spectral clustering. Long Common Sub-Sequence (LCSS) distance is used to compare the extracted proposed descriptor for unequal length sub-trajectories. Experiments using the trajectories of objects data-sets (LABOMNI, CROSS and laser monitoring) demonstrate the superiority of using the proposed multiresolution descriptor as a similarity factor in comparison with the similar techniques in the literature.","PeriodicalId":336066,"journal":{"name":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIA.2017.7983019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Automated object's activity analysis has been and still remains a challenging problem and motion trajectories provide rich spatiotemporal information for this purpose. This paper presents a novel descriptor to analyze object activity based on object trajectories. In the proposed descriptor extraction technique, object's change in direction is extracted in different level of resolution. One of the most important characteristics of the proposed approach is that the descriptor is translation and rotation invariant. We first segment the trajectories based on the absence of changes in direction via spectral clustering. Long Common Sub-Sequence (LCSS) distance is used to compare the extracted proposed descriptor for unequal length sub-trajectories. Experiments using the trajectories of objects data-sets (LABOMNI, CROSS and laser monitoring) demonstrate the superiority of using the proposed multiresolution descriptor as a similarity factor in comparison with the similar techniques in the literature.
一种多分辨率的轨迹描述方法
自动化目标的活动分析一直是一个具有挑战性的问题,运动轨迹为这一目的提供了丰富的时空信息。本文提出了一种基于目标轨迹的描述符来分析目标活动。在描述符提取技术中,以不同的分辨率提取目标的方向变化。该方法最重要的特点之一是描述符是平移和旋转不变量。首先,我们通过谱聚类对轨迹进行分割,以确定轨迹的方向是否存在变化。利用长公共子序列(LCSS)距离对提取的描述符进行非等长子轨迹的比较。使用物体轨迹数据集(LABOMNI、CROSS和激光监测)的实验表明,与文献中的类似技术相比,使用所提出的多分辨率描述符作为相似因子具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信