TraCon: A novel dataset for real-time traffic cones detection using deep learning

Iason Katsamenis, Eleni Eirini Karolou, Agapi Davradou, Eftychios E. Protopapadakis, A. Doulamis, N. Doulamis, D. Kalogeras
{"title":"TraCon: A novel dataset for real-time traffic cones detection using deep learning","authors":"Iason Katsamenis, Eleni Eirini Karolou, Agapi Davradou, Eftychios E. Protopapadakis, A. Doulamis, N. Doulamis, D. Kalogeras","doi":"10.48550/arXiv.2205.11830","DOIUrl":null,"url":null,"abstract":"Substantial progress has been made in the field of object detection in road scenes. However, it is mainly focused on vehicles and pedestrians. To this end, we investigate traffic cone detection, an object category crucial for road effects and maintenance. In this work, the YOLOv5 algorithm is employed, in order to find a solution for the efficient and fast detection of traffic cones. The YOLOv5 can achieve a high detection accuracy with the score of IoU up to 91.31%. The proposed method is been applied to an RGB roadwork image dataset, collected from various sources.","PeriodicalId":234167,"journal":{"name":"International Conference on Novelties in Intelligent Digital Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Novelties in Intelligent Digital Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.11830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Substantial progress has been made in the field of object detection in road scenes. However, it is mainly focused on vehicles and pedestrians. To this end, we investigate traffic cone detection, an object category crucial for road effects and maintenance. In this work, the YOLOv5 algorithm is employed, in order to find a solution for the efficient and fast detection of traffic cones. The YOLOv5 can achieve a high detection accuracy with the score of IoU up to 91.31%. The proposed method is been applied to an RGB roadwork image dataset, collected from various sources.
TraCon:一个使用深度学习进行实时交通锥检测的新数据集
道路场景中的目标检测已经取得了实质性的进展。然而,它主要针对车辆和行人。为此,我们研究了交通锥检测,这是一个对道路效果和维护至关重要的对象类别。本文采用YOLOv5算法,寻找一种高效、快速检测交通锥的解决方案。YOLOv5具有较高的检测精度,IoU分数可达91.31%。将该方法应用于从各种来源收集的RGB道路施工图像数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信