Estimation of Regression and Dispersion Parameters in the Analysis of Proportions

S. Paul
{"title":"Estimation of Regression and Dispersion Parameters in the Analysis of Proportions","authors":"S. Paul","doi":"10.1201/9780203493212.CH16","DOIUrl":null,"url":null,"abstract":"In the analysis of proportions often interest is in the estimation of the mean or the regression parameters. The dispersion parameter then plays the role of a nuisance parameter. However , in some instances, in Toxicology and other similar fields, the dispersion parameter or the intraclass correlation parameter is of primary interest. For example, in some binary-data situations the intraclass correlation is interpreted as ‘heritability of a dichotomous trait’. So, efficient and possibly robust estimation of the dispersion parameter or the intraclass correlation is important. Marginal or conditional estimation of the dispersion parameter is difficult. So we consider joint estimation of the mean( regression) parameters and the dispersion parameter. We consider joint estimation using quadratic estimating functions (QEEs) of Crowder (1987). By varying the coefficients of the QEEs we obtain five sets of estimating equations. We compare large sample relative efficiency of the five sets of estimates obtained by the QEE’s and the quasilikelihood estimates with the maximum likelihood estimates. Estimated large sample relative efficiencies of these estimates are also compared for two real life data sets arising from biostatistical practices. These comparisons show that estimates, using optimal quadratic estimating functions of Crowder (1987) are highly efficient and are the best among all estimates investigated.","PeriodicalId":113421,"journal":{"name":"Advances on Methodological and Applied Aspects of Probability and Statistics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances on Methodological and Applied Aspects of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780203493212.CH16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the analysis of proportions often interest is in the estimation of the mean or the regression parameters. The dispersion parameter then plays the role of a nuisance parameter. However , in some instances, in Toxicology and other similar fields, the dispersion parameter or the intraclass correlation parameter is of primary interest. For example, in some binary-data situations the intraclass correlation is interpreted as ‘heritability of a dichotomous trait’. So, efficient and possibly robust estimation of the dispersion parameter or the intraclass correlation is important. Marginal or conditional estimation of the dispersion parameter is difficult. So we consider joint estimation of the mean( regression) parameters and the dispersion parameter. We consider joint estimation using quadratic estimating functions (QEEs) of Crowder (1987). By varying the coefficients of the QEEs we obtain five sets of estimating equations. We compare large sample relative efficiency of the five sets of estimates obtained by the QEE’s and the quasilikelihood estimates with the maximum likelihood estimates. Estimated large sample relative efficiencies of these estimates are also compared for two real life data sets arising from biostatistical practices. These comparisons show that estimates, using optimal quadratic estimating functions of Crowder (1987) are highly efficient and are the best among all estimates investigated.
比例分析中回归参数和离散参数的估计
在比例分析中,通常关心的是均值或回归参数的估计。然后,色散参数起了干扰参数的作用。然而,在某些情况下,在毒理学和其他类似的领域,分散参数或类内相关参数是主要的兴趣。例如,在某些二元数据情况下,类内相关性被解释为“二分类特征的遗传力”。因此,对频散参数或类内相关性进行有效且尽可能稳健的估计是很重要的。色散参数的边缘或条件估计是困难的。因此,我们考虑均值(回归)参数和离散参数的联合估计。我们考虑使用Crowder(1987)的二次估计函数(QEEs)进行联合估计。通过改变qee的系数,我们得到了五组估计方程。我们比较了QEE获得的五组估计和准似然估计与最大似然估计的大样本相对效率。这些估计的大样本相对效率也比较了两个现实生活数据集产生的生物统计实践。这些比较表明,使用Crowder(1987)的最优二次估计函数的估计是高效的,并且是所有研究的估计中最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信