Machine Learning Prediction Based Integrated Smart Energy Management System to Improve Home Energy Efficiency

Ahmed Al-Adaileh, S. Khaddaj
{"title":"Machine Learning Prediction Based Integrated Smart Energy Management System to Improve Home Energy Efficiency","authors":"Ahmed Al-Adaileh, S. Khaddaj","doi":"10.1109/DCABES57229.2022.00042","DOIUrl":null,"url":null,"abstract":"This paper proposes an integrated smart energy management system that applies different machine learning regression techniques to gather, enhance, and prepare various relevant data taken from the surrounding environment to predict and schedule the running periods of one of the schedulable appliances in the household. The system was applied to a case study with encouraging results showing energy consumption reduction rates up to 36%.","PeriodicalId":344365,"journal":{"name":"2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCABES57229.2022.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an integrated smart energy management system that applies different machine learning regression techniques to gather, enhance, and prepare various relevant data taken from the surrounding environment to predict and schedule the running periods of one of the schedulable appliances in the household. The system was applied to a case study with encouraging results showing energy consumption reduction rates up to 36%.
基于机器学习预测的集成智能能源管理系统提高家庭能源效率
本文提出了一种集成的智能能源管理系统,该系统应用不同的机器学习回归技术来收集、增强和准备从周围环境中获取的各种相关数据,以预测和调度家庭中可调度电器之一的运行周期。该系统应用于一个案例研究,结果令人鼓舞,能耗降低率高达36%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信