Modeling periodic high-frequency intra-day data

N. Modarresi, M. Mohammadi, S. Rezakhah
{"title":"Modeling periodic high-frequency intra-day data","authors":"N. Modarresi, M. Mohammadi, S. Rezakhah","doi":"10.1109/ICDSBA48748.2019.00024","DOIUrl":null,"url":null,"abstract":"High-frequency data typically exhibit periodic patterns in market activity. Furthermore, skewness and kurtosis of financial data has led to development of models with jumps. In order to present a model that supports these features, we introduce a semi-Lévy continuous-time autoregressive moving average (SLCARMA) process. In this paper, we discuss on some properties of such process and estimate the parameters of it by Kalman recursion technique. We fit a SLCARMA(2,1) process to intra-day realized volatility of Doiv Jones industrial average data.","PeriodicalId":382429,"journal":{"name":"2019 3rd International Conference on Data Science and Business Analytics (ICDSBA)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Data Science and Business Analytics (ICDSBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSBA48748.2019.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-frequency data typically exhibit periodic patterns in market activity. Furthermore, skewness and kurtosis of financial data has led to development of models with jumps. In order to present a model that supports these features, we introduce a semi-Lévy continuous-time autoregressive moving average (SLCARMA) process. In this paper, we discuss on some properties of such process and estimate the parameters of it by Kalman recursion technique. We fit a SLCARMA(2,1) process to intra-day realized volatility of Doiv Jones industrial average data.
建模周期高频日内数据
高频数据通常在市场活动中表现出周期性模式。此外,金融数据的偏态和峰度导致了具有跳跃的模型的发展。为了提出一个支持这些特征的模型,我们引入了一个半连续时间自回归移动平均(SLCARMA)过程。本文讨论了这类过程的一些性质,并利用卡尔曼递归技术估计了这类过程的参数。我们将SLCARMA(2,1)过程拟合到道琼斯工业平均指数的当日实现波动率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信