Perception of emotional expressions in different representations using facial feature points

S. Afzal, T. M. Sezgin, Yujian Gao, P. Robinson
{"title":"Perception of emotional expressions in different representations using facial feature points","authors":"S. Afzal, T. M. Sezgin, Yujian Gao, P. Robinson","doi":"10.1109/ACII.2009.5349549","DOIUrl":null,"url":null,"abstract":"Facial expression recognition is an enabling technology for affective computing. Many existing facial expression analysis systems rely on automatically tracked facial feature points. Although psychologists have studied emotion perception from manually specified or marker-based point-light displays, no formal study exists on the amount of emotional information conveyed through automatically tracked feature points. We assess the utility of automatically extracted feature points in conveying emotions for posed and naturalistic data and present results from an experiment that compared human raters' judgements of emotional expressions between actual video clips and three automatically generated representations of them. The implications for optimal face representation and creation of realistic animations are discussed.","PeriodicalId":330737,"journal":{"name":"2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACII.2009.5349549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Facial expression recognition is an enabling technology for affective computing. Many existing facial expression analysis systems rely on automatically tracked facial feature points. Although psychologists have studied emotion perception from manually specified or marker-based point-light displays, no formal study exists on the amount of emotional information conveyed through automatically tracked feature points. We assess the utility of automatically extracted feature points in conveying emotions for posed and naturalistic data and present results from an experiment that compared human raters' judgements of emotional expressions between actual video clips and three automatically generated representations of them. The implications for optimal face representation and creation of realistic animations are discussed.
利用面部特征点感知不同表征下的情绪表达
面部表情识别是情感计算的使能技术。现有的许多面部表情分析系统都依赖于自动跟踪的面部特征点。虽然心理学家已经研究了人工指定的或基于标记的点光显示的情绪感知,但没有关于通过自动跟踪的特征点传达的情绪信息数量的正式研究。我们评估了自动提取特征点在传递姿势和自然数据中的情感方面的效用,并展示了一项实验的结果,该实验比较了人类评分者对实际视频片段和三种自动生成的视频片段之间情感表达的判断。讨论了最佳面部表现和逼真动画创作的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信