Overview of typical application energy efficiency optimization in high-performance data centers

Weidong Wu, Haiyang Chen, Kuanhong Li, Jun Yu
{"title":"Overview of typical application energy efficiency optimization in high-performance data centers","authors":"Weidong Wu, Haiyang Chen, Kuanhong Li, Jun Yu","doi":"10.1109/ICPECA51329.2021.9362524","DOIUrl":null,"url":null,"abstract":"The rapid growth of data has brought huge challenges to the storage and computing capabilities of the cloud computing data center, which is accompanied by huge energy consumption. Hadoop, as the main framework of big data storage and calculation in the current cloud computing data center, has not been optimized for energy efficiency. This paper studies the key technologies of energy efficiency optimization of Hadoop framework components in the data center, including the latest research results of YARN energysaving scheduling strategies and distributed file system (HDFS) energy-saving storage strategies.","PeriodicalId":119798,"journal":{"name":"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPECA51329.2021.9362524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The rapid growth of data has brought huge challenges to the storage and computing capabilities of the cloud computing data center, which is accompanied by huge energy consumption. Hadoop, as the main framework of big data storage and calculation in the current cloud computing data center, has not been optimized for energy efficiency. This paper studies the key technologies of energy efficiency optimization of Hadoop framework components in the data center, including the latest research results of YARN energysaving scheduling strategies and distributed file system (HDFS) energy-saving storage strategies.
高性能数据中心典型应用能效优化概述
数据的快速增长给云计算数据中心的存储和计算能力带来了巨大的挑战,同时伴随着巨大的能源消耗。Hadoop作为当前云计算数据中心大数据存储和计算的主要框架,在能效方面还没有进行优化。本文研究了数据中心Hadoop框架组件能效优化的关键技术,包括YARN节能调度策略和HDFS节能存储策略的最新研究成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信