Simulation of wavefront sensorless correction based on Stochastic Parallel Gradient Descent algorithm

Photonics Asia Pub Date : 2014-11-21 DOI:10.1117/12.2066146
G. Wang
{"title":"Simulation of wavefront sensorless correction based on Stochastic Parallel Gradient Descent algorithm","authors":"G. Wang","doi":"10.1117/12.2066146","DOIUrl":null,"url":null,"abstract":"Stochastic Parallel Gradient Descent(SPGD) algorithm can optimize the system exhibition firsthand without using of wavefront sensor, it predigests the adaptive optic system. Based on SPGD algotithm, a model with 32 element demormable mirror was simulated, the capability of correct toward static aberration and convergence of SPGD algorithm are analysed, the relationship of gain coefficient, stochastic perturbation amplitude are discussed, an adaptive adjustment of gain coefficient is proposed, and it can improve convergence rate effectively.","PeriodicalId":164339,"journal":{"name":"Photonics Asia","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2066146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stochastic Parallel Gradient Descent(SPGD) algorithm can optimize the system exhibition firsthand without using of wavefront sensor, it predigests the adaptive optic system. Based on SPGD algotithm, a model with 32 element demormable mirror was simulated, the capability of correct toward static aberration and convergence of SPGD algorithm are analysed, the relationship of gain coefficient, stochastic perturbation amplitude are discussed, an adaptive adjustment of gain coefficient is proposed, and it can improve convergence rate effectively.
基于随机并行梯度下降算法的波前无传感器校正仿真
随机平行梯度下降(SPGD)算法可以在不使用波前传感器的情况下直接优化系统显示,简化了自适应光学系统。基于SPGD算法,仿真了一个32元可变形镜模型,分析了SPGD算法对静态像差的校正能力和收敛性,讨论了增益系数与随机扰动幅值的关系,提出了增益系数的自适应调整,有效地提高了收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信