Ransomware Detection based on Network Behavior using Machine Learning and Hidden Markov Model with Gaussian Emission

Aman Srivastava, Nitesh Kumar, Anand Handa, S. Shukla
{"title":"Ransomware Detection based on Network Behavior using Machine Learning and Hidden Markov Model with Gaussian Emission","authors":"Aman Srivastava, Nitesh Kumar, Anand Handa, S. Shukla","doi":"10.1109/CSR57506.2023.10225001","DOIUrl":null,"url":null,"abstract":"Ransomware poses a deadly threat to any device system and organization. Several studies and techniques are proposed in response to a dire need for a solution to detect ransomware in the early stages. We propose an approach to detect ransom ware based on network traffic behavior and validate the result using Hidden Markov Model with Gaussian Emission (GMM-HMM). Our methodology captures the network traffic, models a system's network state, and uses machine learning algorithms to predict if a state is benign or malicious. Our approach proves to be efficient with less false positive rate. We use the ISOT Ransomware dataset to train ML algorithms and GMM-HMM. In our work, we achieve an accuracy of 99.9% and 96.8% using decision tree and GMM-HMM, respectively. We use three different scenarios to test the robustness of the proposed framework with unseen data. The final state classification is achieved using the classification percentage of GMM-HMM.","PeriodicalId":354918,"journal":{"name":"2023 IEEE International Conference on Cyber Security and Resilience (CSR)","volume":"101 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Cyber Security and Resilience (CSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSR57506.2023.10225001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ransomware poses a deadly threat to any device system and organization. Several studies and techniques are proposed in response to a dire need for a solution to detect ransomware in the early stages. We propose an approach to detect ransom ware based on network traffic behavior and validate the result using Hidden Markov Model with Gaussian Emission (GMM-HMM). Our methodology captures the network traffic, models a system's network state, and uses machine learning algorithms to predict if a state is benign or malicious. Our approach proves to be efficient with less false positive rate. We use the ISOT Ransomware dataset to train ML algorithms and GMM-HMM. In our work, we achieve an accuracy of 99.9% and 96.8% using decision tree and GMM-HMM, respectively. We use three different scenarios to test the robustness of the proposed framework with unseen data. The final state classification is achieved using the classification percentage of GMM-HMM.
基于机器学习和高斯发射隐马尔可夫模型的网络行为勒索软件检测
勒索软件对任何设备、系统和组织都构成致命威胁。为了在早期阶段检测勒索软件的解决方案的迫切需要,提出了一些研究和技术。提出了一种基于网络流量行为的勒索软件检测方法,并利用高斯发射隐马尔可夫模型(GMM-HMM)对检测结果进行了验证。我们的方法捕获网络流量,模拟系统的网络状态,并使用机器学习算法来预测状态是良性的还是恶意的。结果表明,该方法具有较低的误报率。我们使用ISOT勒索软件数据集来训练ML算法和GMM-HMM。在我们的工作中,我们使用决策树和GMM-HMM分别达到99.9%和96.8%的准确率。我们使用三种不同的场景来使用未见过的数据测试所提出框架的鲁棒性。使用GMM-HMM的分类百分比实现最终状态分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信