Cosparse dictionary learning for the orthogonal case

Paul Irofti, B. Dumitrescu
{"title":"Cosparse dictionary learning for the orthogonal case","authors":"Paul Irofti, B. Dumitrescu","doi":"10.1109/ICSTCC.2015.7321317","DOIUrl":null,"url":null,"abstract":"Dictionary learning is usually approached by looking at the support of the sparse representations. Recent years have shown results in dictionary improvement by investigating the cosupport via the analysis-based cosparse model. In this paper we present a new cosparse learning algorithm for orthogonal dictionary blocks that provides significant dictionary recovery improvements and representation error shrinkage. Furthermore, we show the beneficial effects of using this algorithm inside existing methods based on building the dictionary as a structured union of orthonormal bases.","PeriodicalId":257135,"journal":{"name":"2015 19th International Conference on System Theory, Control and Computing (ICSTCC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 19th International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC.2015.7321317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dictionary learning is usually approached by looking at the support of the sparse representations. Recent years have shown results in dictionary improvement by investigating the cosupport via the analysis-based cosparse model. In this paper we present a new cosparse learning algorithm for orthogonal dictionary blocks that provides significant dictionary recovery improvements and representation error shrinkage. Furthermore, we show the beneficial effects of using this algorithm inside existing methods based on building the dictionary as a structured union of orthonormal bases.
正交情况下的稀疏字典学习
字典学习通常通过查看稀疏表示的支持来实现。近年来,通过基于分析的共稀疏模型来研究词典的共支持,已经取得了一定的成果。在本文中,我们提出了一种新的正交字典块的共稀疏学习算法,它提供了显著的字典恢复改进和表示误差缩减。此外,我们展示了在基于将字典构建为标准正交基的结构化联合的现有方法中使用该算法的有益效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信