Modelling of optimal parking for a wheeled robot

A. Ardentov, I. Gubanov
{"title":"Modelling of optimal parking for a wheeled robot","authors":"A. Ardentov, I. Gubanov","doi":"10.1109/NIR52917.2021.9666064","DOIUrl":null,"url":null,"abstract":"We consider a kinematic model for a differential wheeled robot. The corresponding optimal control problem is stated in the general form with an arbitrary domain for the controls and an arbitrary minimized functional. The known specifications of the problem lead to the classical models given by Markov-Dubins problem, Reeds-Shepp problem, Euler’s elastic problem and the sub-Riemannian problem on the rototranslation group. We describe the algorithms for constructing optimal trajectories of the robot for the given boundary conditions. These algorithms are implemented in an interface software developed in Wolfram Mathematica system. Additionally, we allow to equip the robot with a trailer. Trailer trajectories are computed for each model. We assume that the robot stays at the initial and final positions with zero velocities and accelerates to the given maximum linear velocity along the way. The interface program animates the movement of the robot (with a trailer) along the chosen optimal paths.","PeriodicalId":333109,"journal":{"name":"2021 International Conference \"Nonlinearity, Information and Robotics\" (NIR)","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference \"Nonlinearity, Information and Robotics\" (NIR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NIR52917.2021.9666064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a kinematic model for a differential wheeled robot. The corresponding optimal control problem is stated in the general form with an arbitrary domain for the controls and an arbitrary minimized functional. The known specifications of the problem lead to the classical models given by Markov-Dubins problem, Reeds-Shepp problem, Euler’s elastic problem and the sub-Riemannian problem on the rototranslation group. We describe the algorithms for constructing optimal trajectories of the robot for the given boundary conditions. These algorithms are implemented in an interface software developed in Wolfram Mathematica system. Additionally, we allow to equip the robot with a trailer. Trailer trajectories are computed for each model. We assume that the robot stays at the initial and final positions with zero velocities and accelerates to the given maximum linear velocity along the way. The interface program animates the movement of the robot (with a trailer) along the chosen optimal paths.
轮式机器人最优停车建模
考虑了差动轮式机器人的运动学模型。给出了相应的最优控制问题的一般形式,控制具有任意定义域和任意最小泛函。该问题的已知规范导致了Markov-Dubins问题、reed - shepp问题、欧拉弹性问题和旋转平移群上的亚黎曼问题等经典模型。我们描述了在给定边界条件下构造机器人最优轨迹的算法。这些算法在Wolfram Mathematica系统中开发的接口软件中实现。此外,我们允许为机器人配备拖车。为每个模型计算拖车轨迹。我们假设机器人以零速度停留在初始位置和最终位置,并在途中加速到给定的最大线速度。界面程序使机器人(带拖车)沿着选定的最优路径运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信