Spoken Indian Language Classification using GMM supervectors and Artificial Neural Networks

A. Bakshi, S. Kopparapu
{"title":"Spoken Indian Language Classification using GMM supervectors and Artificial Neural Networks","authors":"A. Bakshi, S. Kopparapu","doi":"10.1109/IBSSC47189.2019.8972979","DOIUrl":null,"url":null,"abstract":"Indian languages are phonetic in nature; phonetics is branch of linguistics which studies the structure of human language sound. Acoustic phonetic features associated with languages play an important role in spoken language identification. In this paper, Gaussian Mixture Model supervectors is used to capture acoustic phonetic variation in Indian languages. Mel frequency cepstral coefficient (MFCC) with delta coefficients is used to represent the language specific acoustic phonetic information of speech and artificial neural network ANN is used as a classifier for language identification. In the present work, we have conducted extensive experiments for three different datasets created from the news broadcast in different Indian languages from All India Radio. The performance of ANN classifier using GMM supervectors is evaluated on these three datasets.","PeriodicalId":148941,"journal":{"name":"2019 IEEE Bombay Section Signature Conference (IBSSC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Bombay Section Signature Conference (IBSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBSSC47189.2019.8972979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Indian languages are phonetic in nature; phonetics is branch of linguistics which studies the structure of human language sound. Acoustic phonetic features associated with languages play an important role in spoken language identification. In this paper, Gaussian Mixture Model supervectors is used to capture acoustic phonetic variation in Indian languages. Mel frequency cepstral coefficient (MFCC) with delta coefficients is used to represent the language specific acoustic phonetic information of speech and artificial neural network ANN is used as a classifier for language identification. In the present work, we have conducted extensive experiments for three different datasets created from the news broadcast in different Indian languages from All India Radio. The performance of ANN classifier using GMM supervectors is evaluated on these three datasets.
基于GMM超向量和人工神经网络的印度口语分类
印度语言本质上是语音的;语音学是研究人类语言语音结构的语言学分支。语言的语音特征在口语识别中起着重要的作用。本文利用高斯混合模型超向量捕捉印度语言的语音变化。利用Mel频率倒谱系数(MFCC)和delta系数来表示语音的语言特定声学语音信息,并利用人工神经网络ANN作为语言识别的分类器。在目前的工作中,我们对三种不同的数据集进行了广泛的实验,这些数据集是从全印度广播电台用不同的印度语言播报的新闻中创建的。在这三个数据集上评价了基于GMM超向量的人工神经网络分类器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信