Dual-band ATR for forward-looking infrared images

P. Dainty, J. Boyce, C. Dimitropoulos, P. Edmundson, D. Toulson, M. Bernhardt
{"title":"Dual-band ATR for forward-looking infrared images","authors":"P. Dainty, J. Boyce, C. Dimitropoulos, P. Edmundson, D. Toulson, M. Bernhardt","doi":"10.1109/CVBVS.1999.781091","DOIUrl":null,"url":null,"abstract":"Three aspects of object recognition and tracking are evaluated on forward-looking infrared data from two wavebands. The combination of a correlator with a Kalman filter and a neural network embedded within the tracking loop is shown to increase true recognitions and decrease false recognitions. Large training sets may be reduced by condensing via a k-nearest-neighbour algorithm without significant loss of network performance. Systems combining information from the two wavebands show only a slight improvement over the best single band channel.","PeriodicalId":394469,"journal":{"name":"Proceedings IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (CVBVS'99)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (CVBVS'99)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVBVS.1999.781091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Three aspects of object recognition and tracking are evaluated on forward-looking infrared data from two wavebands. The combination of a correlator with a Kalman filter and a neural network embedded within the tracking loop is shown to increase true recognitions and decrease false recognitions. Large training sets may be reduced by condensing via a k-nearest-neighbour algorithm without significant loss of network performance. Systems combining information from the two wavebands show only a slight improvement over the best single band channel.
双频ATR用于前视红外图像
利用两个波段的前视红外数据,从三个方面对目标识别和跟踪进行了评估。在跟踪环路中嵌入带有卡尔曼滤波器的相关器和神经网络,可以提高真实识别率,减少错误识别率。通过k近邻算法压缩可以减少大型训练集,而不会显著损失网络性能。结合来自两个波段的信息的系统仅比最佳的单波段信道略有改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信