Dominique LaSalle, Md. Mostofa Ali Patwary, N. Satish, N. Sundaram, P. Dubey, G. Karypis
{"title":"Improving graph partitioning for modern graphs and architectures","authors":"Dominique LaSalle, Md. Mostofa Ali Patwary, N. Satish, N. Sundaram, P. Dubey, G. Karypis","doi":"10.1145/2833179.2833188","DOIUrl":null,"url":null,"abstract":"Graph partitioning is an important preprocessing step in applications dealing with sparse-irregular data. As such, the ability to efficiently partition a graph in parallel is crucial to the performance of these applications. The number of compute cores in a compute node continues to increase, demanding ever more scalability from shared-memory graph partitioners. In this paper we present algorithmic improvements to the multithreaded graph partitioner mt-Metis. We experimentally evaluate our methods on a 36 core machine, using 20 different graphs from a variety of domains. Our improvements decrease the runtime by 1.5-11.7X and improve strong scaling by 82%.","PeriodicalId":215872,"journal":{"name":"Proceedings of the 5th Workshop on Irregular Applications: Architectures and Algorithms","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Workshop on Irregular Applications: Architectures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2833179.2833188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46
Abstract
Graph partitioning is an important preprocessing step in applications dealing with sparse-irregular data. As such, the ability to efficiently partition a graph in parallel is crucial to the performance of these applications. The number of compute cores in a compute node continues to increase, demanding ever more scalability from shared-memory graph partitioners. In this paper we present algorithmic improvements to the multithreaded graph partitioner mt-Metis. We experimentally evaluate our methods on a 36 core machine, using 20 different graphs from a variety of domains. Our improvements decrease the runtime by 1.5-11.7X and improve strong scaling by 82%.