Improving graph partitioning for modern graphs and architectures

Dominique LaSalle, Md. Mostofa Ali Patwary, N. Satish, N. Sundaram, P. Dubey, G. Karypis
{"title":"Improving graph partitioning for modern graphs and architectures","authors":"Dominique LaSalle, Md. Mostofa Ali Patwary, N. Satish, N. Sundaram, P. Dubey, G. Karypis","doi":"10.1145/2833179.2833188","DOIUrl":null,"url":null,"abstract":"Graph partitioning is an important preprocessing step in applications dealing with sparse-irregular data. As such, the ability to efficiently partition a graph in parallel is crucial to the performance of these applications. The number of compute cores in a compute node continues to increase, demanding ever more scalability from shared-memory graph partitioners. In this paper we present algorithmic improvements to the multithreaded graph partitioner mt-Metis. We experimentally evaluate our methods on a 36 core machine, using 20 different graphs from a variety of domains. Our improvements decrease the runtime by 1.5-11.7X and improve strong scaling by 82%.","PeriodicalId":215872,"journal":{"name":"Proceedings of the 5th Workshop on Irregular Applications: Architectures and Algorithms","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Workshop on Irregular Applications: Architectures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2833179.2833188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

Graph partitioning is an important preprocessing step in applications dealing with sparse-irregular data. As such, the ability to efficiently partition a graph in parallel is crucial to the performance of these applications. The number of compute cores in a compute node continues to increase, demanding ever more scalability from shared-memory graph partitioners. In this paper we present algorithmic improvements to the multithreaded graph partitioner mt-Metis. We experimentally evaluate our methods on a 36 core machine, using 20 different graphs from a variety of domains. Our improvements decrease the runtime by 1.5-11.7X and improve strong scaling by 82%.
改进现代图和架构的图分区
图划分是处理稀疏不规则数据的重要预处理步骤。因此,有效地对图进行并行分区的能力对这些应用程序的性能至关重要。计算节点中的计算核心数量不断增加,这要求共享内存图分区器具有更高的可伸缩性。本文提出了对多线程图分割器mt-Metis的算法改进。我们在一台36核的机器上实验评估了我们的方法,使用了来自不同领域的20个不同的图。我们的改进将运行时间减少了1.5-11.7倍,并将强伸缩性提高了82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信