How to efficiently snapshot transactional data: hardware or software controlled?

Henrik Mühe, A. Kemper, Thomas Neumann
{"title":"How to efficiently snapshot transactional data: hardware or software controlled?","authors":"Henrik Mühe, A. Kemper, Thomas Neumann","doi":"10.1145/1995441.1995444","DOIUrl":null,"url":null,"abstract":"The quest for real-time business intelligence requires executing mixed transaction and query processing workloads on the same current database state. However, as Harizopoulos et al. [6] showed for transactional processing, co-execution using classical concurrency control techniques will not yield the necessary performance -- even in re-emerging main memory database systems. Therefore, we designed an in-memory database system that separates transaction processing from OLAP query processing via periodically refreshed snapshots. Thus, OLAP queries can be executed without any synchronization and OLTP transaction processing follows the lock-free, mostly serial processing paradigm of H-Store [8]. In this paper, we analyze different snapshot mechanisms: Hardware-supported Page Shadowing, which lazily copies memory pages when changed by transactions, software controlled Tuple Shadowing, which generates a new version when a tuple is modified, software controlled Twin Tuple, which constantly maintains two versions of each tuple and HotCold Shadowing, which effectively combines Tuple Shadowing and hardware-supported Page Shadowing by clustering update-intensive objects. We evaluate their performance based on the mixed workload CH-BenCHmark which combines the TPC-C and the TPC-H benchmarks on the same database schema and state.","PeriodicalId":298901,"journal":{"name":"International Workshop on Data Management on New Hardware","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1995441.1995444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

The quest for real-time business intelligence requires executing mixed transaction and query processing workloads on the same current database state. However, as Harizopoulos et al. [6] showed for transactional processing, co-execution using classical concurrency control techniques will not yield the necessary performance -- even in re-emerging main memory database systems. Therefore, we designed an in-memory database system that separates transaction processing from OLAP query processing via periodically refreshed snapshots. Thus, OLAP queries can be executed without any synchronization and OLTP transaction processing follows the lock-free, mostly serial processing paradigm of H-Store [8]. In this paper, we analyze different snapshot mechanisms: Hardware-supported Page Shadowing, which lazily copies memory pages when changed by transactions, software controlled Tuple Shadowing, which generates a new version when a tuple is modified, software controlled Twin Tuple, which constantly maintains two versions of each tuple and HotCold Shadowing, which effectively combines Tuple Shadowing and hardware-supported Page Shadowing by clustering update-intensive objects. We evaluate their performance based on the mixed workload CH-BenCHmark which combines the TPC-C and the TPC-H benchmarks on the same database schema and state.
如何有效地快照事务数据:硬件或软件控制?
对实时业务智能的追求需要在相同的当前数据库状态上执行混合事务和查询处理工作负载。然而,正如Harizopoulos等人[6]所表明的,对于事务处理,使用经典并发控制技术的协同执行不会产生必要的性能——即使在重新出现的主内存数据库系统中也是如此。因此,我们设计了一个内存数据库系统,通过定期刷新快照将事务处理与OLAP查询处理分开。因此,OLAP查询可以在没有任何同步的情况下执行,OLTP事务处理遵循H-Store的无锁、串行处理范式[8]。在本文中,我们分析了不同的快照机制:硬件支持的Page Shadowing(在事务改变时延迟复制内存页面),软件控制的Tuple Shadowing(在元组被修改时生成新版本),软件控制的Twin Tuple(不断维护每个元组的两个版本)和HotCold Shadowing(通过聚集更新密集型对象有效地将Tuple Shadowing和硬件支持的Page Shadowing结合起来)。我们基于混合工作负载CH-BenCHmark来评估它们的性能,CH-BenCHmark在相同的数据库模式和状态上结合了TPC-C和TPC-H基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信