A. Sekimoto, V. Kitsios, C. Atkinson, J. Jiménez, J. Soria
{"title":"INTENSE FOCAL AND REYNOLDS STRESS STRUCTURES OF A SELF-SIMILAR ADVERSE PRESSURE GRADIENT TURBULENT BOUNDARY LAYER","authors":"A. Sekimoto, V. Kitsios, C. Atkinson, J. Jiménez, J. Soria","doi":"10.1615/tsfp10.130","DOIUrl":null,"url":null,"abstract":"The turbulence statistics and structures of a self-similar adverse pressure gradient turbulent boundary layer (APGTBL) are investigated using direct numerical simulation (DNS) of the flow at the verge of separation. The desired self-similar APG-TBL is achieved by a modification of the far-field velocity boundary condition. The required wallnormal velocity in the far-field to produce the necessary adverse pressure gradient was estimated based on the analytical free-stream streamwise velocity distribution for a flow at the point of separation, and the assumption that the streamlines of the outer flow follow the growth of the boundary layer thickness. The APG-TBL develops over a momentum thickness based Reynolds number upto 12000, and achieves a self-similar region of constant friction coefficient, pressure velocity and shape factor. Turbulence statistics in this region show self-similar collapse by using the scaling of the external velocity and the displacement thickness. In this study, the structure of the APG-TBL is investigated using topological methodology and visualisation techniques for a zero pressure gradient turbulent boundary layer (ZPG-TBL) and for the self-similar APG-TBL. The second invariants of the velocity gradient tensor (VGT), which are representative of coherent structures dominated by vortical motions, show a stark difference in the structure and location of coherent vortical structures that exists between the self-similar APGTBL and a ZPG-TBL. Further details based on the structure and distributions of the invariants of VGT and intense Reynolds stress structures of the self-similar APG-TBL are presented.","PeriodicalId":266791,"journal":{"name":"Proceeding of Tenth International Symposium on Turbulence and Shear Flow Phenomena","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of Tenth International Symposium on Turbulence and Shear Flow Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/tsfp10.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The turbulence statistics and structures of a self-similar adverse pressure gradient turbulent boundary layer (APGTBL) are investigated using direct numerical simulation (DNS) of the flow at the verge of separation. The desired self-similar APG-TBL is achieved by a modification of the far-field velocity boundary condition. The required wallnormal velocity in the far-field to produce the necessary adverse pressure gradient was estimated based on the analytical free-stream streamwise velocity distribution for a flow at the point of separation, and the assumption that the streamlines of the outer flow follow the growth of the boundary layer thickness. The APG-TBL develops over a momentum thickness based Reynolds number upto 12000, and achieves a self-similar region of constant friction coefficient, pressure velocity and shape factor. Turbulence statistics in this region show self-similar collapse by using the scaling of the external velocity and the displacement thickness. In this study, the structure of the APG-TBL is investigated using topological methodology and visualisation techniques for a zero pressure gradient turbulent boundary layer (ZPG-TBL) and for the self-similar APG-TBL. The second invariants of the velocity gradient tensor (VGT), which are representative of coherent structures dominated by vortical motions, show a stark difference in the structure and location of coherent vortical structures that exists between the self-similar APGTBL and a ZPG-TBL. Further details based on the structure and distributions of the invariants of VGT and intense Reynolds stress structures of the self-similar APG-TBL are presented.