Common error hierarchical NLMS algorithm

Mark Raifel, Amos Schreibman, Yaakov Cemal
{"title":"Common error hierarchical NLMS algorithm","authors":"Mark Raifel, Amos Schreibman, Yaakov Cemal","doi":"10.5281/ZENODO.42308","DOIUrl":null,"url":null,"abstract":"Two-stage common error hierarchical normalized least-mean-square (NLMS) algorithm is presented in the context of network echo cancellers and sparse systems. The suggested adaptive filter structure is generic, uses a common error feedback for both stages, and is applicable with any type of error minimization technique. The simulation results show that the two-stage method exploits the sparseness of the system better than the proportionate NLMS (PNLMS) while keeping the initial convergence rate intact and improving the steady state convergence time significantly.","PeriodicalId":331889,"journal":{"name":"2011 19th European Signal Processing Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 19th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.42308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two-stage common error hierarchical normalized least-mean-square (NLMS) algorithm is presented in the context of network echo cancellers and sparse systems. The suggested adaptive filter structure is generic, uses a common error feedback for both stages, and is applicable with any type of error minimization technique. The simulation results show that the two-stage method exploits the sparseness of the system better than the proportionate NLMS (PNLMS) while keeping the initial convergence rate intact and improving the steady state convergence time significantly.
常见错误分层NLMS算法
针对网络回波消除和稀疏系统,提出了两阶段共误差分层归一化最小均方(NLMS)算法。建议的自适应滤波器结构是通用的,在两个阶段都使用通用的误差反馈,并且适用于任何类型的误差最小化技术。仿真结果表明,与比例NLMS (PNLMS)相比,两阶段方法在保持初始收敛速度不变的同时,更好地利用了系统的稀疏性,并显著提高了稳态收敛时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信