A Machine Learning Approach to Predict Poor Mental Health of Intimate Partner Violence Survivors

Aditi Sisodia, Manar Jammal, Christo El Morr
{"title":"A Machine Learning Approach to Predict Poor Mental Health of Intimate Partner Violence Survivors","authors":"Aditi Sisodia, Manar Jammal, Christo El Morr","doi":"10.1109/ACTEA58025.2023.10193963","DOIUrl":null,"url":null,"abstract":"Intimate Partner Violence (IPV) is a wide social problem in Canada and abroad. Survivors of IPV are likely to experience mental health challenges. Detecting the experience of mental health challenges is paramount to address them as early as possible. Using a Statistic Canada survey (General Health survey, 2014), we have built a machine learning approach to predict the experience of poor mental health among IPV survivors. Multi-Layer Perceptron (MLP) provide the best accuracy score of 94.88 for a 14-feature model, and 94.21 % for a 24-feature model. The use of a more detailed dataset from Statistics Canada is recommended. Multidisciplinary research has a great potential in this emerging field.","PeriodicalId":153723,"journal":{"name":"2023 Fifth International Conference on Advances in Computational Tools for Engineering Applications (ACTEA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Fifth International Conference on Advances in Computational Tools for Engineering Applications (ACTEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACTEA58025.2023.10193963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intimate Partner Violence (IPV) is a wide social problem in Canada and abroad. Survivors of IPV are likely to experience mental health challenges. Detecting the experience of mental health challenges is paramount to address them as early as possible. Using a Statistic Canada survey (General Health survey, 2014), we have built a machine learning approach to predict the experience of poor mental health among IPV survivors. Multi-Layer Perceptron (MLP) provide the best accuracy score of 94.88 for a 14-feature model, and 94.21 % for a 24-feature model. The use of a more detailed dataset from Statistics Canada is recommended. Multidisciplinary research has a great potential in this emerging field.
预测亲密伴侣暴力幸存者不良心理健康的机器学习方法
亲密伴侣暴力(IPV)是加拿大乃至世界范围内一个广泛存在的社会问题。IPV的幸存者可能会遇到精神健康方面的挑战。发现精神卫生挑战的经历对于尽早解决这些挑战至关重要。利用加拿大统计局的一项调查(一般健康调查,2014年),我们建立了一种机器学习方法来预测IPV幸存者心理健康状况不佳的经历。多层感知器(MLP)对14个特征的模型提供了94.88的最佳准确率,对24个特征的模型提供了94.21%的准确率。建议使用来自加拿大统计局的更详细的数据集。多学科研究在这一新兴领域具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信