Integrated Feature Selection and Clustering from Multiple Views for a Taxonomic Problem

Huimin Chen, H. Bart, Shuqing Huang
{"title":"Integrated Feature Selection and Clustering from Multiple Views for a Taxonomic Problem","authors":"Huimin Chen, H. Bart, Shuqing Huang","doi":"10.1109/MMSP.2007.4412855","DOIUrl":null,"url":null,"abstract":"As computer and database technologies advance rapidly, biologists all over the world can share biologically meaningful data from images of specimens and use the data to classify the specimens taxonomically. Accurate shape analysis of a specimen from multiple views of 2D images is crucial for finding diagnostic features using geometric morphometric techniques. We propose an integrated feature selection and clustering framework that automatically identifies a set of feature variables to group specimens into a binary cluster tree. The candidate features are generated from reconstructed 3D shape and local saliency characteristics from 2D images of the specimen. We use a mixture model to estimate the significance value of each feature and control the false discovery rate in the feature selection process so that the clustering algorithm can efficiently partition the specimen samples into clusters that may correspond to different species. The experiments on a taxonomic problem involving species of suckers in the genus Carpiodes demonstrate promising results using the proposed framework with small sample size.","PeriodicalId":225295,"journal":{"name":"2007 IEEE 9th Workshop on Multimedia Signal Processing","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 9th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2007.4412855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As computer and database technologies advance rapidly, biologists all over the world can share biologically meaningful data from images of specimens and use the data to classify the specimens taxonomically. Accurate shape analysis of a specimen from multiple views of 2D images is crucial for finding diagnostic features using geometric morphometric techniques. We propose an integrated feature selection and clustering framework that automatically identifies a set of feature variables to group specimens into a binary cluster tree. The candidate features are generated from reconstructed 3D shape and local saliency characteristics from 2D images of the specimen. We use a mixture model to estimate the significance value of each feature and control the false discovery rate in the feature selection process so that the clustering algorithm can efficiently partition the specimen samples into clusters that may correspond to different species. The experiments on a taxonomic problem involving species of suckers in the genus Carpiodes demonstrate promising results using the proposed framework with small sample size.
一个分类学问题的多视角综合特征选择与聚类
随着计算机和数据库技术的迅速发展,世界各地的生物学家可以从标本图像中共享具有生物学意义的数据,并利用这些数据对标本进行分类。从二维图像的多个视图对标本进行准确的形状分析对于使用几何形态测量技术寻找诊断特征至关重要。我们提出了一个集成的特征选择和聚类框架,该框架自动识别一组特征变量,将样本分组到二叉聚类树中。候选特征是由重建的三维形状和局部显著性特征从标本的二维图像生成的。我们使用混合模型来估计每个特征的显著性值,并控制特征选择过程中的错误发现率,使聚类算法能够有效地将标本样本划分为可能对应不同物种的聚类。对Carpiodes属吸盘物种的分类问题进行了实验,在小样本量的情况下,使用所提出的框架取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信