Acceleration of Monte-Carlo simulation on high performance computing platforms

Pei-Jen Wang, C. Liu, Chia-Heng Tu, Chen-Pang Lee, Shih-Hao Hung
{"title":"Acceleration of Monte-Carlo simulation on high performance computing platforms","authors":"Pei-Jen Wang, C. Liu, Chia-Heng Tu, Chen-Pang Lee, Shih-Hao Hung","doi":"10.1145/3264746.3264765","DOIUrl":null,"url":null,"abstract":"Monte Carlo methods are often used to solve computational problems with randomness. The random sampling helps avoid the deterministic results, but it requires intensive computations to obtain the results. Several attempts have been made to boost the performance of the Monte Carlo based algorithms by taking advantage of the parallel computers. In this paper, we use the photonic simulation application, MCML, as a case study to 1) parallelize the Monte Carlo method with OpenMP and vectorization, 2) compare the parallelization techniques, and 3) evaluate the parallelized programs on the platforms with the Xeon Phi processor. In particular, the OpenMP version incorporates the vectorization technique that utilizes the AVX-512 vector instructions on the Xeon Phi processor. Our experimental results show that the OpenMP code achieves up to 345x speedup on the Xeon Phi processor, compared with the original code runs on the Xeon E5 processor.","PeriodicalId":186790,"journal":{"name":"Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3264746.3264765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Monte Carlo methods are often used to solve computational problems with randomness. The random sampling helps avoid the deterministic results, but it requires intensive computations to obtain the results. Several attempts have been made to boost the performance of the Monte Carlo based algorithms by taking advantage of the parallel computers. In this paper, we use the photonic simulation application, MCML, as a case study to 1) parallelize the Monte Carlo method with OpenMP and vectorization, 2) compare the parallelization techniques, and 3) evaluate the parallelized programs on the platforms with the Xeon Phi processor. In particular, the OpenMP version incorporates the vectorization technique that utilizes the AVX-512 vector instructions on the Xeon Phi processor. Our experimental results show that the OpenMP code achieves up to 345x speedup on the Xeon Phi processor, compared with the original code runs on the Xeon E5 processor.
蒙特卡罗仿真在高性能计算平台上的加速
蒙特卡罗方法常用于解决具有随机性的计算问题。随机抽样避免了结果的不确定性,但需要大量的计算才能得到结果。为了提高基于蒙特卡罗算法的性能,人们已经做了一些尝试,利用并行计算机的优势。本文以光子模拟应用程序MCML为例,对蒙特卡罗方法与OpenMP和矢量化进行并行化,对并行化技术进行比较,并对使用Xeon Phi处理器的平台上的并行化程序进行评估。特别是,OpenMP版本结合了向量化技术,利用Xeon Phi处理器上的AVX-512矢量指令。实验结果表明,与在Xeon E5处理器上运行的原始代码相比,OpenMP代码在Xeon Phi处理器上实现了高达345倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信