Statistical methods for analysis of hyperspectral anomaly detectors

D. Rosario
{"title":"Statistical methods for analysis of hyperspectral anomaly detectors","authors":"D. Rosario","doi":"10.1117/12.776982","DOIUrl":null,"url":null,"abstract":"Most hyperspectral (HS) anomaly detectors in the literature have been evaluated using a few HS imagery sets to estimate the well-known ROC curve. Although this evaluation approach can be helpful in assessing detectors' rates of correct detection and false alarm on a limited dataset, it does not shed lights on reasons for these detectors' strengths and weaknesses using a significantly larger sample size. This paper discusses a more rigorous approach to testing and comparing HS anomaly detectors, and it is intended to serve as a guide for such a task. Using randomly generated samples, the approach introduces hypothesis tests for two idealized homogeneous sample experiments, where model parameters can vary the difficulty level of these tests. These simulation experiments are devised to address a more generalized concern, i.e., the expected degradation of correct detection as a function of increasing noise in the alternative hypothesis.","PeriodicalId":133868,"journal":{"name":"SPIE Defense + Commercial Sensing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.776982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most hyperspectral (HS) anomaly detectors in the literature have been evaluated using a few HS imagery sets to estimate the well-known ROC curve. Although this evaluation approach can be helpful in assessing detectors' rates of correct detection and false alarm on a limited dataset, it does not shed lights on reasons for these detectors' strengths and weaknesses using a significantly larger sample size. This paper discusses a more rigorous approach to testing and comparing HS anomaly detectors, and it is intended to serve as a guide for such a task. Using randomly generated samples, the approach introduces hypothesis tests for two idealized homogeneous sample experiments, where model parameters can vary the difficulty level of these tests. These simulation experiments are devised to address a more generalized concern, i.e., the expected degradation of correct detection as a function of increasing noise in the alternative hypothesis.
高光谱异常探测器的统计分析方法
文献中的大多数高光谱(HS)异常检测器都是使用少数高光谱图像集来评估众所周知的ROC曲线的。尽管这种评估方法可以帮助评估检测器在有限数据集上的正确检测率和误报率,但它并没有在使用显着较大的样本量时阐明这些检测器的优势和劣势的原因。本文讨论了一种更严格的方法来测试和比较HS异常检测器,它旨在为此类任务提供指导。使用随机生成的样本,该方法为两个理想化的均匀样本实验引入假设检验,其中模型参数可以改变这些检验的难度水平。这些模拟实验的设计是为了解决一个更普遍的问题,即正确检测的预期退化作为替代假设中噪声增加的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信