A Reconfigurable SRAM Computing-in-Memory Macro Supporting Ping-Pong Operation and CIM pipeline for Multi-mode MAC operations

Kanglin Xiao, Xiaoxin Cui, Xin Qiao, Xin'an Wang, Yuan Wang
{"title":"A Reconfigurable SRAM Computing-in-Memory Macro Supporting Ping-Pong Operation and CIM pipeline for Multi-mode MAC operations","authors":"Kanglin Xiao, Xiaoxin Cui, Xin Qiao, Xin'an Wang, Yuan Wang","doi":"10.1109/ICTA56932.2022.9962978","DOIUrl":null,"url":null,"abstract":"In this work, we present a reconfigurable SRAM computing-in-memory (CIM) macro supporting ping-pong operation and pipeline operation for multi-mode multiply-and-accumulate (MAC) operations. The macro can be reconfigured to execute AND or XNOR, offering great flexibilities to cover binary neural network (BNN), ternary neural network (TNN), and multi-bit operation through serially 1-bit AND operations. The main contributions include: (1) A reconfigurable scheme to map inputs and weight of 8T1C bit-cell, supporting three MAC operations; (2) An architecture integrated ping-pong operation and two-level CIM pipeline. Simulated in a standard 28-nm process, the proposed design shows good computing linearity and variations. The average energy efficiency of 1b-AND, BNN, and TNN MAC operation are 1533.7, 1522.9, and 1713.2 TOPS/W, respectively.","PeriodicalId":325602,"journal":{"name":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTA56932.2022.9962978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a reconfigurable SRAM computing-in-memory (CIM) macro supporting ping-pong operation and pipeline operation for multi-mode multiply-and-accumulate (MAC) operations. The macro can be reconfigured to execute AND or XNOR, offering great flexibilities to cover binary neural network (BNN), ternary neural network (TNN), and multi-bit operation through serially 1-bit AND operations. The main contributions include: (1) A reconfigurable scheme to map inputs and weight of 8T1C bit-cell, supporting three MAC operations; (2) An architecture integrated ping-pong operation and two-level CIM pipeline. Simulated in a standard 28-nm process, the proposed design shows good computing linearity and variations. The average energy efficiency of 1b-AND, BNN, and TNN MAC operation are 1533.7, 1522.9, and 1713.2 TOPS/W, respectively.
支持乒乓操作的可重构SRAM内存计算宏和支持多模式MAC操作的CIM管道
在这项工作中,我们提出了一个可重构的SRAM内存计算(CIM)宏,支持乒乓操作和多模式乘法和累积(MAC)操作的管道操作。宏可以重新配置为执行AND或XNOR,提供了很大的灵活性,可以覆盖二进制神经网络(BNN)、三元神经网络(TNN),以及通过串行1位AND操作进行多比特操作。主要贡献包括:(1)8T1C位元输入和权值映射的可重构方案,支持三种MAC操作;(2)乒乓操作和两级CIM管道集成的架构。在标准的28纳米制程中进行模拟,所提出的设计显示出良好的计算线性和变化。1b-AND、BNN和TNN MAC运行的平均能效分别为1533.7、1522.9和1713.2 TOPS/W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信