Effect of multiquantum barriers on performance of InGaN/GaN multiple-quantum-well light-emitting diodes

T. Nee, Jen-Cheng Wang, R. Lin
{"title":"Effect of multiquantum barriers on performance of InGaN/GaN multiple-quantum-well light-emitting diodes","authors":"T. Nee, Jen-Cheng Wang, R. Lin","doi":"10.1063/1.2761824","DOIUrl":null,"url":null,"abstract":"In this paper we demonstrate that the improvement in the emission intensity afforded by the introduction of multiquantum barrier (MQB) structures in an InGaN/GaN multiple-quantum-well (MQW) light-emitting diode (LED) is attributable to increased excitation cross sections. Over the temperature range from 300 to 20 K, the excitation cross sections of the MQW emissions possessing MQB structures were between 9.6 × 10-12cm2and 5.3 × 10-15cm2, while those possessing GaN barriers were between 8.1 × 10-12cm2and 4.5 × 10-15cm2. We found, however, that the figure of merit for the LED light output was the capture fraction of the cross section; we observed that the dependence of the optical intensity on the temperature coincided with the evolution of the capture fraction. This analysis permitted us to assign the capture cross-section ratios at room temperature for the MQWs with MQBs and with GaN barriers as 0.46 and 0.35. Furthermore, the MQW system possessing well-designed MQB structures not only exhibited the thermally insensitive luminescence but also inhibited energetic carrier overflow.","PeriodicalId":220722,"journal":{"name":"2006 IEEE Conference on Emerging Technologies - Nanoelectronics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Emerging Technologies - Nanoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.2761824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we demonstrate that the improvement in the emission intensity afforded by the introduction of multiquantum barrier (MQB) structures in an InGaN/GaN multiple-quantum-well (MQW) light-emitting diode (LED) is attributable to increased excitation cross sections. Over the temperature range from 300 to 20 K, the excitation cross sections of the MQW emissions possessing MQB structures were between 9.6 × 10-12cm2and 5.3 × 10-15cm2, while those possessing GaN barriers were between 8.1 × 10-12cm2and 4.5 × 10-15cm2. We found, however, that the figure of merit for the LED light output was the capture fraction of the cross section; we observed that the dependence of the optical intensity on the temperature coincided with the evolution of the capture fraction. This analysis permitted us to assign the capture cross-section ratios at room temperature for the MQWs with MQBs and with GaN barriers as 0.46 and 0.35. Furthermore, the MQW system possessing well-designed MQB structures not only exhibited the thermally insensitive luminescence but also inhibited energetic carrier overflow.
多量子势垒对InGaN/GaN多量子阱发光二极管性能的影响
在本文中,我们证明了在InGaN/GaN多量子阱(MQW)发光二极管(LED)中引入多量子势垒(MQB)结构所带来的发射强度的改善是由于激发截面的增加。在300 ~ 20 K的温度范围内,具有MQB结构的MQW辐射的激发截面在9.6 × 10-12cm2 ~ 5.3 × 10-15cm2之间,而具有GaN势垒的MQW辐射的激发截面在8.1 × 10-12cm2 ~ 4.5 × 10-15cm2之间。然而,我们发现LED光输出的优点是截面的捕获分数;我们观察到光强对温度的依赖性与捕获分数的演化一致。该分析允许我们在室温下分配具有mqb和GaN势垒的mqw的捕获横截面比为0.46和0.35。此外,设计良好的MQB结构的MQW体系不仅表现出热不敏感的发光特性,而且还抑制了高能载流子溢出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信