Efficient Hidden Semi-Markov Model Inference for Structured Video Sequences

David Tweed, Robert B. Fisher, J. Bins, T. List
{"title":"Efficient Hidden Semi-Markov Model Inference for Structured Video Sequences","authors":"David Tweed, Robert B. Fisher, J. Bins, T. List","doi":"10.1109/VSPETS.2005.1570922","DOIUrl":null,"url":null,"abstract":"The semantic interpretation of video sequences by computer is often formulated as probabilistically relating lower-level features to higher-level states, constrained by a transition graph. Using hidden Markov models inference is efficient but time-in-state data cannot be included, whereas using hidden semi-Markov models we can model duration but have inefficient inference. We present a new efficient O(T) algorithm for inference in certain HSMMs and show experimental results on video sequence interpretation in television footage to demonstrate that explicitly modelling time-in-state improves interpretation performance","PeriodicalId":435841,"journal":{"name":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSPETS.2005.1570922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

The semantic interpretation of video sequences by computer is often formulated as probabilistically relating lower-level features to higher-level states, constrained by a transition graph. Using hidden Markov models inference is efficient but time-in-state data cannot be included, whereas using hidden semi-Markov models we can model duration but have inefficient inference. We present a new efficient O(T) algorithm for inference in certain HSMMs and show experimental results on video sequence interpretation in television footage to demonstrate that explicitly modelling time-in-state improves interpretation performance
结构化视频序列的有效隐半马尔可夫模型推断
计算机对视频序列的语义解释通常被表述为低级别特征与高级别状态的概率关联,并受到转移图的约束。使用隐马尔可夫模型进行推理是有效的,但不能包含状态时间数据,而使用隐半马尔可夫模型可以对持续时间进行建模,但推理效率低下。我们提出了一种新的高效的O(T)算法用于某些hsmm的推理,并展示了在电视镜头中视频序列解释的实验结果,以证明明确建模状态时间可以提高解释性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信