Survey of Deep Learning Neural Networks Implementation on FPGAs

El Hadrami Cheikh Tourad, M. Eleuldj
{"title":"Survey of Deep Learning Neural Networks Implementation on FPGAs","authors":"El Hadrami Cheikh Tourad, M. Eleuldj","doi":"10.1109/CloudTech49835.2020.9365911","DOIUrl":null,"url":null,"abstract":"Deep learning has recently indicated that FPGAs (Field-Programmable Gate Arrays) play a significant role in accelerating DLNNs (Deep Learning Neural Networks). The initial specification of DLNN is usually done using a high-level language such as python, followed by a manual transformation to HDL (Hardware Description Language) for synthesis using a vendor tool. This transformation is tedious and needs HDL expertise, which limits the relevance of FPGAs. This paper presents an updated survey of the existing frameworks for mapping DLNNs onto FPGAs, comparing their characteristics, architectural choices, and achieved performance. Besides, we provide a comprehensive evaluation of different tools and their effectiveness for mapping DLNNs onto FPGAs. Finally, we present the future works.","PeriodicalId":272860,"journal":{"name":"2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudTech49835.2020.9365911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Deep learning has recently indicated that FPGAs (Field-Programmable Gate Arrays) play a significant role in accelerating DLNNs (Deep Learning Neural Networks). The initial specification of DLNN is usually done using a high-level language such as python, followed by a manual transformation to HDL (Hardware Description Language) for synthesis using a vendor tool. This transformation is tedious and needs HDL expertise, which limits the relevance of FPGAs. This paper presents an updated survey of the existing frameworks for mapping DLNNs onto FPGAs, comparing their characteristics, architectural choices, and achieved performance. Besides, we provide a comprehensive evaluation of different tools and their effectiveness for mapping DLNNs onto FPGAs. Finally, we present the future works.
基于fpga的深度学习神经网络实现综述
深度学习最近表明fpga(现场可编程门阵列)在加速DLNNs(深度学习神经网络)方面发挥着重要作用。DLNN的初始规范通常使用高级语言(如python)完成,然后使用供应商工具手动转换为HDL(硬件描述语言)进行合成。这种转换是繁琐的,需要HDL专业知识,这限制了fpga的相关性。本文介绍了将dlnn映射到fpga的现有框架的最新调查,比较了它们的特性,架构选择和实现的性能。此外,我们提供了一个全面的评估不同的工具和它们的有效性映射到fpga。最后,对今后的工作进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信