Strategies of Deep Learning for Tomographic Reconstruction

Xiaogang Yang, C. Schroer
{"title":"Strategies of Deep Learning for Tomographic Reconstruction","authors":"Xiaogang Yang, C. Schroer","doi":"10.1109/ICIP42928.2021.9506395","DOIUrl":null,"url":null,"abstract":"In this article, we introduce three different strategies of tomographic reconstruction based on deep learning. These algorithms are model-based learning for iterative optimization. We discuss the basic principles of developing these algorithms. The performance of them is analyzed and evaluated both on theory and simulation reconstruction. We developed open-source software to run these algorithms in the same framework. From the simulation results, all these deep learning algorithms showed improvements in reconstruction quality and accuracy where the strategy based on Generative Adversarial Networks showed the advantage especially.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, we introduce three different strategies of tomographic reconstruction based on deep learning. These algorithms are model-based learning for iterative optimization. We discuss the basic principles of developing these algorithms. The performance of them is analyzed and evaluated both on theory and simulation reconstruction. We developed open-source software to run these algorithms in the same framework. From the simulation results, all these deep learning algorithms showed improvements in reconstruction quality and accuracy where the strategy based on Generative Adversarial Networks showed the advantage especially.
层析成像重建的深度学习策略
本文介绍了三种基于深度学习的层析成像重建策略。这些算法是基于模型的迭代优化学习。我们讨论了开发这些算法的基本原理。从理论和仿真两方面对它们的性能进行了分析和评价。我们开发了开源软件,在相同的框架下运行这些算法。从仿真结果来看,这些深度学习算法在重建质量和精度上都有提高,其中基于生成式对抗网络的策略表现出优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信