Topological properties of epidemic aftershock processes

Jordi Baró Urbea
{"title":"Topological properties of epidemic aftershock processes","authors":"Jordi Baró Urbea","doi":"10.1002/essoar.10501014.1","DOIUrl":null,"url":null,"abstract":"Earthquakes in seismological catalogs and acoustic emission events in lab experiments can be statistically described as a linear Hawkes point process, where the spatio-temporal rate of events is a linear superposition of background intensity and the aftershock clusters triggered by preceding activity. Traditionally, statistical seismology has interpreted this model as the outcome of an epidemic branching process, where one-to-one causal links can be established between mainshocks and aftershocks. Declustering techniques have been used to infer the underlying triggering trees and relate their topological properties with epidemic branching models. Here, we review how the standard Epidemic Type Aftershock Sequence (ETAS) model extends from the Galton-Watson (GW) branching processes and bridges two extreme cases: Poisson sampling and scale-free power-law trees. We report the most essential topological properties expected in GW epidemic trees: the branching probability, the distribution of tree size, the expected family size, and the relation between average leaf-depth and tree size. We find that such topological properties depend exclusively on two sampling parameters of the standard ETAS model: the average branching ratio $N_b$ and the exponent ratio $\\alpha/b$ determining the branching probability distribution. From these results, one can use the memory-less GW as a null-model for empirical triggering processes and assess the validity of the ETAS model to reproduce the statistics of natural and artificial catalogs.","PeriodicalId":390991,"journal":{"name":"arXiv: Geophysics","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/essoar.10501014.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Earthquakes in seismological catalogs and acoustic emission events in lab experiments can be statistically described as a linear Hawkes point process, where the spatio-temporal rate of events is a linear superposition of background intensity and the aftershock clusters triggered by preceding activity. Traditionally, statistical seismology has interpreted this model as the outcome of an epidemic branching process, where one-to-one causal links can be established between mainshocks and aftershocks. Declustering techniques have been used to infer the underlying triggering trees and relate their topological properties with epidemic branching models. Here, we review how the standard Epidemic Type Aftershock Sequence (ETAS) model extends from the Galton-Watson (GW) branching processes and bridges two extreme cases: Poisson sampling and scale-free power-law trees. We report the most essential topological properties expected in GW epidemic trees: the branching probability, the distribution of tree size, the expected family size, and the relation between average leaf-depth and tree size. We find that such topological properties depend exclusively on two sampling parameters of the standard ETAS model: the average branching ratio $N_b$ and the exponent ratio $\alpha/b$ determining the branching probability distribution. From these results, one can use the memory-less GW as a null-model for empirical triggering processes and assess the validity of the ETAS model to reproduce the statistics of natural and artificial catalogs.
流行病余震过程的拓扑性质
地震目录中的地震和实验室实验中的声发射事件可以统计地描述为线性霍克斯点过程,其中事件的时空速率是背景强度和由先前活动触发的余震群的线性叠加。传统上,统计地震学将该模型解释为流行病分支过程的结果,其中可以在主震和余震之间建立一对一的因果关系。聚类技术已被用于推断潜在的触发树,并将其拓扑特性与流行病分支模型联系起来。在这里,我们回顾了标准的流行病型余震序列(ETAS)模型是如何从高尔顿-沃森(GW)分支过程扩展而来的,并连接了两个极端情况:泊松采样和无标度幂律树。我们报告了GW流行病树中最基本的拓扑性质:分支概率、树大小的分布、期望的家族大小以及平均叶深与树大小之间的关系。我们发现这种拓扑性质完全依赖于标准ETAS模型的两个采样参数:平均分支比$N_b$和决定分支概率分布的指数比$\alpha/b$。根据这些结果,我们可以将无记忆GW作为经验触发过程的零模型,并评估ETAS模型在再现自然和人工目录统计数据方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信