DIDroid: Android Malware Classification and Characterization Using Deep Image Learning

Abir Rahali, Arash Habibi Lashkari, Gurdip Kaur, Laya Taheri, F. Gagnon, Frédéric Massicotte
{"title":"DIDroid: Android Malware Classification and Characterization Using Deep Image Learning","authors":"Abir Rahali, Arash Habibi Lashkari, Gurdip Kaur, Laya Taheri, F. Gagnon, Frédéric Massicotte","doi":"10.1145/3442520.3442522","DOIUrl":null,"url":null,"abstract":"The unrivaled threat of android malware is the root cause of various security problems on the internet. Although there are remarkable efforts in detection and classification of android malware based on machine learning techniques, a small number of attempts are made to classify and characterize it using deep learning. Detecting android malware in smartphones is an essential target for cyber community to get rid of menacing malware samples. This paper proposes an image-based deep neural network method to classify and characterize android malware samples taken from a huge malware dataset with 12 prominent malware categories and 191 eminent malware families. This work successfully demonstrates the use of deep image learning to classify and characterize android malware with an accuracy of 93.36% and log loss of less than 0.20 for training and testing set.","PeriodicalId":340416,"journal":{"name":"Proceedings of the 2020 10th International Conference on Communication and Network Security","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 10th International Conference on Communication and Network Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442520.3442522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

The unrivaled threat of android malware is the root cause of various security problems on the internet. Although there are remarkable efforts in detection and classification of android malware based on machine learning techniques, a small number of attempts are made to classify and characterize it using deep learning. Detecting android malware in smartphones is an essential target for cyber community to get rid of menacing malware samples. This paper proposes an image-based deep neural network method to classify and characterize android malware samples taken from a huge malware dataset with 12 prominent malware categories and 191 eminent malware families. This work successfully demonstrates the use of deep image learning to classify and characterize android malware with an accuracy of 93.36% and log loss of less than 0.20 for training and testing set.
DIDroid:使用深度图像学习的Android恶意软件分类和表征
安卓恶意软件无与伦比的威胁是互联网上各种安全问题的根本原因。尽管在基于机器学习技术的android恶意软件检测和分类方面已经取得了显著的成就,但使用深度学习对其进行分类和表征的尝试较少。检测智能手机中的android恶意软件是网络社区清除恶意软件样本的重要目标。本文提出了一种基于图像的深度神经网络方法,对来自12个突出恶意软件类别和191个突出恶意软件家族的庞大恶意软件数据集的android恶意软件样本进行分类和表征。本工作成功地演示了使用深度图像学习对android恶意软件进行分类和表征,训练集和测试集的准确率为93.36%,日志损失小于0.20。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信