Ji Wang, Weidong Bao, Lei Zheng, Xiaomin Zhu, Philip S. Yu
{"title":"An Attention-augmented Deep Architecture for Hard Drive Status Monitoring in Large-scale Storage Systems","authors":"Ji Wang, Weidong Bao, Lei Zheng, Xiaomin Zhu, Philip S. Yu","doi":"10.1145/3340290","DOIUrl":null,"url":null,"abstract":"Data centers equipped with large-scale storage systems are critical infrastructures in the era of big data. The enormous amount of hard drives in storage systems magnify the failure probability, which may cause tremendous loss for both data service users and providers. Despite a set of reactive fault-tolerant measures such as RAID, it is still a tough issue to enhance the reliability of large-scale storage systems. Proactive prediction is an effective method to avoid possible hard-drive failures in advance. A series of models based on the SMART statistics have been proposed to predict impending hard-drive failures. Nonetheless, there remain some serious yet unsolved challenges like the lack of explainability of prediction results. To address these issues, we carefully analyze a dataset collected from a real-world large-scale storage system and then design an attention-augmented deep architecture for hard-drive health status assessment and failure prediction. The deep architecture, composed of a feature integration layer, a temporal dependency extraction layer, an attention layer, and a classification layer, cannot only monitor the status of hard drives but also assist in failure cause diagnoses. The experiments based on real-world datasets show that the proposed deep architecture is able to assess the hard-drive status and predict the impending failures accurately. In addition, the experimental results demonstrate that the attention-augmented deep architecture can reveal the degradation progression of hard drives automatically and assist administrators in tracing the cause of hard drive failures.","PeriodicalId":273014,"journal":{"name":"ACM Transactions on Storage (TOS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage (TOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3340290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Data centers equipped with large-scale storage systems are critical infrastructures in the era of big data. The enormous amount of hard drives in storage systems magnify the failure probability, which may cause tremendous loss for both data service users and providers. Despite a set of reactive fault-tolerant measures such as RAID, it is still a tough issue to enhance the reliability of large-scale storage systems. Proactive prediction is an effective method to avoid possible hard-drive failures in advance. A series of models based on the SMART statistics have been proposed to predict impending hard-drive failures. Nonetheless, there remain some serious yet unsolved challenges like the lack of explainability of prediction results. To address these issues, we carefully analyze a dataset collected from a real-world large-scale storage system and then design an attention-augmented deep architecture for hard-drive health status assessment and failure prediction. The deep architecture, composed of a feature integration layer, a temporal dependency extraction layer, an attention layer, and a classification layer, cannot only monitor the status of hard drives but also assist in failure cause diagnoses. The experiments based on real-world datasets show that the proposed deep architecture is able to assess the hard-drive status and predict the impending failures accurately. In addition, the experimental results demonstrate that the attention-augmented deep architecture can reveal the degradation progression of hard drives automatically and assist administrators in tracing the cause of hard drive failures.