Parallel Implementation of the Slope One Algorithm for Collaborative Filtering

Efthalia Karydi, K. Margaritis
{"title":"Parallel Implementation of the Slope One Algorithm for Collaborative Filtering","authors":"Efthalia Karydi, K. Margaritis","doi":"10.1109/PCi.2012.34","DOIUrl":null,"url":null,"abstract":"Recommender systems are mechanisms that filter information and predict a user's preference to an item. Parallel implementations of recommender systems improve scalability issues and can be applied to internet-based companies having considerable impact on their profits. This paper implements two parallel versions of the collaborative filtering algorithm Slope One, which has advantages such as its efficiency and the ability to update data dynamically. The first presented version is parallely implemented with the use of the OpenMP API and its performance is evaluated on a multi-core system. The second is an hybrid approach using both OpenMP and MPI and its performance is evaluated in an homogeneous and an heterogeneous cluster. Experiments proved that the multithreaded version is 9,5 times faster than the sequential algorithm.","PeriodicalId":131195,"journal":{"name":"2012 16th Panhellenic Conference on Informatics","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 16th Panhellenic Conference on Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCi.2012.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Recommender systems are mechanisms that filter information and predict a user's preference to an item. Parallel implementations of recommender systems improve scalability issues and can be applied to internet-based companies having considerable impact on their profits. This paper implements two parallel versions of the collaborative filtering algorithm Slope One, which has advantages such as its efficiency and the ability to update data dynamically. The first presented version is parallely implemented with the use of the OpenMP API and its performance is evaluated on a multi-core system. The second is an hybrid approach using both OpenMP and MPI and its performance is evaluated in an homogeneous and an heterogeneous cluster. Experiments proved that the multithreaded version is 9,5 times faster than the sequential algorithm.
协同滤波中斜率1算法的并行实现
推荐系统是一种过滤信息并预测用户对商品偏好的机制。推荐系统的并行实现改善了可伸缩性问题,可以应用于基于互联网的公司,对其利润有相当大的影响。本文实现了两个并行版本的协同过滤算法Slope One,该算法具有效率高、数据动态更新能力强等优点。第一个版本使用OpenMP API并行实现,并在多核系统上对其性能进行了评估。第二种是使用OpenMP和MPI的混合方法,其性能在同构和异构集群中进行评估。实验证明,多线程版本比顺序算法快9.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信