3D shape matching by geodesic eccentricity

Adrian Ion, N. Artner, G. Peyré, S. Mármol, W. Kropatsch, L. Cohen
{"title":"3D shape matching by geodesic eccentricity","authors":"Adrian Ion, N. Artner, G. Peyré, S. Mármol, W. Kropatsch, L. Cohen","doi":"10.1109/CVPRW.2008.4563032","DOIUrl":null,"url":null,"abstract":"This paper makes use of the continuous eccentricity transform to perform 3D shape matching. The eccentricity transform has already been proved useful in a discrete graph-theoretic setting and has been applied to 2D shape matching. We show how these ideas extend to higher dimensions. The eccentricity transform is used to compute descriptors for 3D shapes. These descriptors are defined as histograms of the eccentricity transform and are naturally invariant to Euclidean motion and articulation. They show promising results for shape discrimination.","PeriodicalId":102206,"journal":{"name":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2008.4563032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

This paper makes use of the continuous eccentricity transform to perform 3D shape matching. The eccentricity transform has already been proved useful in a discrete graph-theoretic setting and has been applied to 2D shape matching. We show how these ideas extend to higher dimensions. The eccentricity transform is used to compute descriptors for 3D shapes. These descriptors are defined as histograms of the eccentricity transform and are naturally invariant to Euclidean motion and articulation. They show promising results for shape discrimination.
基于测地线偏心率的三维形状匹配
本文利用连续偏心变换进行三维形状匹配。偏心变换已被证明在离散图论环境下是有用的,并已应用于二维形状匹配。我们将展示这些思想如何扩展到更高的维度。偏心变换用于计算三维形状的描述符。这些描述符被定义为偏心变换的直方图,对欧几里得运动和关节是自然不变的。它们在形状识别方面显示出令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信