A comparison of particle swarms techniques for the development of quantitative structure-activity relationship models for drug design

W. Cedeño, D. Agrafiotis
{"title":"A comparison of particle swarms techniques for the development of quantitative structure-activity relationship models for drug design","authors":"W. Cedeño, D. Agrafiotis","doi":"10.1109/CSBW.2005.5","DOIUrl":null,"url":null,"abstract":"The development of quantitative structure-activity relationship (QSAR) models for computer-assisted drug design is a well-known technique in the pharmaceutical industry. QSAR models provide medicinal chemists with mechanisms for predicting the biological activity of compounds using their chemical structure or properties. This information can significantly reduce the time to discover a new drug. This work compares and contrasts particle swarms to simulated annealing and artificial ant systems techniques for the development of QSAR models based on artificial neural networks and k-nearest neighbor and kernel regression. Particle Swarm techniques are shown to compared favorably to the other techniques using three classical data sets from the QSAR literature.","PeriodicalId":123531,"journal":{"name":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSBW.2005.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The development of quantitative structure-activity relationship (QSAR) models for computer-assisted drug design is a well-known technique in the pharmaceutical industry. QSAR models provide medicinal chemists with mechanisms for predicting the biological activity of compounds using their chemical structure or properties. This information can significantly reduce the time to discover a new drug. This work compares and contrasts particle swarms to simulated annealing and artificial ant systems techniques for the development of QSAR models based on artificial neural networks and k-nearest neighbor and kernel regression. Particle Swarm techniques are shown to compared favorably to the other techniques using three classical data sets from the QSAR literature.
粒子群技术在药物设计定量构效关系模型开发中的比较
计算机辅助药物设计的定量构效关系(QSAR)模型的开发是制药工业中一项众所周知的技术。QSAR模型为药物化学家提供了利用化合物的化学结构或性质预测其生物活性的机制。这些信息可以大大减少发现新药的时间。这项工作将粒子群与模拟退火和人工蚂蚁系统技术进行了比较和对比,以开发基于人工神经网络、k近邻和核回归的QSAR模型。使用QSAR文献中的三个经典数据集,粒子群技术被证明比其他技术更有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信