Quadratic time-frequency distributions: the new hyperbolic class and its intersection with the affine class

A. Papandreou, F. Hlawatsch, G. Boudreaux-Bartels
{"title":"Quadratic time-frequency distributions: the new hyperbolic class and its intersection with the affine class","authors":"A. Papandreou, F. Hlawatsch, G. Boudreaux-Bartels","doi":"10.1109/SSAP.1992.246840","DOIUrl":null,"url":null,"abstract":"The proposed new class of quadratic time-frequency distributions is based on the 'hyperbolic time shift' and scale invariance properties that are important in the analysis of Doppler invariant signals used in bat and dolphin echolocation, and of 'locally self-similar' signals used in fractals and fractional Brownian motion. The hyperbolic class can be characterized by 2-D kernels, and kernel constraints are derived for some desirable TFD properties. The Bertrand distribution and the Altes distribution are members of the hyperbolic class. The authors define a 'localized' subclass and study the intersection between the affine class and the hyperbolic class.<<ETX>>","PeriodicalId":309407,"journal":{"name":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1992.246840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The proposed new class of quadratic time-frequency distributions is based on the 'hyperbolic time shift' and scale invariance properties that are important in the analysis of Doppler invariant signals used in bat and dolphin echolocation, and of 'locally self-similar' signals used in fractals and fractional Brownian motion. The hyperbolic class can be characterized by 2-D kernels, and kernel constraints are derived for some desirable TFD properties. The Bertrand distribution and the Altes distribution are members of the hyperbolic class. The authors define a 'localized' subclass and study the intersection between the affine class and the hyperbolic class.<>
二次时频分布:新的双曲类及其与仿射类的交集
提出的新一类二次型时频分布基于“双曲时移”和尺度不变性,这在分析蝙蝠和海豚回声定位中使用的多普勒不变性信号以及分形和分数阶布朗运动中使用的“局部自相似”信号中很重要。双曲类可以用二维核来表征,并推导了一些理想的TFD性质的核约束。伯特兰分布和阿尔特斯分布都属于双曲型分布。作者定义了一个“局部化”子类,并研究了仿射类和双曲类之间的交集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信