A Context-Driven Merge-Sort Model for Community-Oriented Lexical Simplification

Rongying Li, Wenxiu Xie, Jiaying Song, Leung-Pun Wong, Fu Lee Wang, Tianyong Hao
{"title":"A Context-Driven Merge-Sort Model for Community-Oriented Lexical Simplification","authors":"Rongying Li, Wenxiu Xie, Jiaying Song, Leung-Pun Wong, Fu Lee Wang, Tianyong Hao","doi":"10.1109/ISPCE-ASIA57917.2022.9971098","DOIUrl":null,"url":null,"abstract":"Lexical simplification aims to convert complex words in a sentence into semantic equivalent but simple words. Most existing methods ignore sentence contextual information, which inevitably produces a large number of spurious substitute candidates. To that end, this paper proposes a new context-driven Merge-sort model which leverages contextual information in each step of lexical simplification, and a new merging method to combine ranking results produced by the proposed model. Based on standard datasets, our model outperforms a list of baselines including the state-of-the-art LSBert model, indicating its effectiveness in community-oriented lexical simplification.","PeriodicalId":197173,"journal":{"name":"2022 IEEE International Symposium on Product Compliance Engineering - Asia (ISPCE-ASIA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Product Compliance Engineering - Asia (ISPCE-ASIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPCE-ASIA57917.2022.9971098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lexical simplification aims to convert complex words in a sentence into semantic equivalent but simple words. Most existing methods ignore sentence contextual information, which inevitably produces a large number of spurious substitute candidates. To that end, this paper proposes a new context-driven Merge-sort model which leverages contextual information in each step of lexical simplification, and a new merging method to combine ranking results produced by the proposed model. Based on standard datasets, our model outperforms a list of baselines including the state-of-the-art LSBert model, indicating its effectiveness in community-oriented lexical simplification.
面向社区的词汇简化的上下文驱动合并排序模型
词汇化简的目的是将句子中的复杂词转化为语义等价但简单的词。现有的方法大多忽略了句子上下文信息,不可避免地产生了大量虚假的替代候选。为此,本文提出了一种新的上下文驱动的合并排序模型,该模型在词法简化的每一步中都利用了上下文信息,并提出了一种新的合并方法来合并该模型产生的排序结果。基于标准数据集,我们的模型优于一系列基线,包括最先进的LSBert模型,表明其在面向社区的词汇简化方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信