A Cepstral Mean Subtraction based features for Singer Identification

Purushotam G. Radadia, H. Patil
{"title":"A Cepstral Mean Subtraction based features for Singer Identification","authors":"Purushotam G. Radadia, H. Patil","doi":"10.1109/IALP.2014.6973510","DOIUrl":null,"url":null,"abstract":"Singer IDentification (SID) is a very challenging problem in Music Information Retrieval (MIR) system. Instrumental accompaniments, quality of recording apparatus and other singing voices (in chorus) make SID very difficult and challenging research problem. In this paper, we propose SID system on large database of 500 Hindi (Bollywood) songs using state-of-the-art Mel Frequency Cepstral Coefficients (MFCC) and Cepstral Mean Subtracted (CMS) features. We compare the performance of 3rd order polynomial classifier and Gaussian Mixture Model (GMM). With 3rd order polynomial classifier, we achieved % SID accuracy of 78 % and 89.5 % (and Equal Error Rate (EER) of 6.75 % and 6.42 %) for MFCC and CMSMFCC, respectively. Furthermore, score-level fusion of MFCC and CMSMFCC reduced EER by 0.95 % than MFCC alone. On the other hand, GMM gave % SID accuracy of 70.75 % for both MFCC and CMSMFCC. Finally, we found that CMS-based features are effective to alleviate album effect in SID problem.","PeriodicalId":117334,"journal":{"name":"2014 International Conference on Asian Language Processing (IALP)","volume":"519 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2014.6973510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Singer IDentification (SID) is a very challenging problem in Music Information Retrieval (MIR) system. Instrumental accompaniments, quality of recording apparatus and other singing voices (in chorus) make SID very difficult and challenging research problem. In this paper, we propose SID system on large database of 500 Hindi (Bollywood) songs using state-of-the-art Mel Frequency Cepstral Coefficients (MFCC) and Cepstral Mean Subtracted (CMS) features. We compare the performance of 3rd order polynomial classifier and Gaussian Mixture Model (GMM). With 3rd order polynomial classifier, we achieved % SID accuracy of 78 % and 89.5 % (and Equal Error Rate (EER) of 6.75 % and 6.42 %) for MFCC and CMSMFCC, respectively. Furthermore, score-level fusion of MFCC and CMSMFCC reduced EER by 0.95 % than MFCC alone. On the other hand, GMM gave % SID accuracy of 70.75 % for both MFCC and CMSMFCC. Finally, we found that CMS-based features are effective to alleviate album effect in SID problem.
一种基于倒谱均值减法的歌手识别方法
歌手身份识别是音乐信息检索(MIR)系统中一个非常具有挑战性的问题。乐器伴奏,录音设备的质量和其他歌声(合唱)使SID非常困难和具有挑战性的研究问题。在本文中,我们利用最先进的Mel频率倒谱系数(MFCC)和倒谱均值减去(CMS)特征,在500首印度语(宝莱坞)歌曲的大型数据库上提出了SID系统。我们比较了三阶多项式分类器和高斯混合模型(GMM)的性能。使用三阶多项式分类器,我们在MFCC和CMSMFCC上分别获得了78%和89.5%的SID准确率(相等错误率(EER)分别为6.75%和6.42%)。此外,MFCC和CMSMFCC的评分水平融合比MFCC单独降低了0.95%的EER。另一方面,GMM对MFCC和CMSMFCC的SID精度均为70.75%。最后,我们发现基于cms的特性可以有效地缓解SID问题中的相册效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信