1.5 Magnetic properties

A. Borovik-romanov, H. Grimmer, M. Kenzelmann
{"title":"1.5 Magnetic properties","authors":"A. Borovik-romanov, H. Grimmer, M. Kenzelmann","doi":"10.1107/97809553602060000904","DOIUrl":null,"url":null,"abstract":"This chapter gives a short review of the structure and some properties of magnetic substances that depend mainly on the symmetry of these substances. Aspects related to the magnetic symmetry receive the most emphasis. The magnetic symmetry takes into account the fact that it is necessary to consider time inversion in addition to the usual spatial transformations in order to describe the invariance of the thermodynamic equilibrium states of a body. The first part of the chapter is devoted to a brief classification of disordered and ordered magnetics. The classification of ferromagnets according to the type of the magnetic structure is given in Section 1.5.1.2.1. In Section 1.5.1.2.2, the antiferromagnets are classified by the types of their magnetic structures: collinear, weakly non-collinear and strongly non-collinear antiferromagnets. Incommensurate structures are briefly mentioned in Section 1.5.1.2.3. Section 1.5.2 is devoted to magnetic symmetry. Different types of magnetic point (Section 1.5.2.1) and magnetic space (Section 1.5.2.3) groups are defined. The 22 magnetic Bravais lattices are displayed in Section 1.5.2.2. The transition from the paramagnetic state into the magnetically ordered state entails a transition from one magnetic group into another. These transitions are considered in Section 1.5.3. The domain structure of ferromagnets and antiferromagnets is considered in Section 1.5.4, where 180° and T-domains are described. Non-collinear antiferromagnetic structures (weakly ferromagnetic, non-collinear and non-coplanar antiferromagnetic structures) are described in Section 1.5.5. Besides the magnetic phase transition from the disordered into the ordered state, there exist transitions from one magnetic structure into another. Those of these that are obtained by a rotation of the ferromagnetic or antiferromagnetic vector relative to the crystallographic axis are called reorientation transitions and are analysed in Section 1.5.6. Sections 1.5.7 and 1.5.8 are devoted to phenomena that can be (and were) predicted only on the basis of magnetic symmetry. These are piezomagnetism (Section 1.5.7) and the magnetoelectric effect (Section 1.5.8). In Section 1.5.9, the magnetostriction in ferromagnets is briefly discussed.\r\n\r\n\r\nKeywords:\r\n\r\nBravais lattices;\r\nGaussian system of units;\r\nLandau theory;\r\nS-domains;\r\nSI units;\r\nangular phase;\r\nanisotropy energy;\r\nantiferromagnetic ferroelectrics;\r\nantiferromagnetic helical structures;\r\nantiferromagnetic phases;\r\nantiferromagnetic structures;\r\nantiferromagnetic vectors;\r\nantiferromagnets;\r\ndiamagnets;\r\ndomains;\r\neasy-axis magnetics;\r\neasy-plane magnetics;\r\nexchange energy;\r\nexchange symmetry;\r\nferrimagnets;\r\nferroelectric antiferromagnets;\r\nferroelectric materials;\r\nferroic domains;\r\nferromagnetic ferroelectrics;\r\nferromagnetic materials;\r\nferromagnetic vectors;\r\nferromagnetism;\r\nferromagnets;\r\nhelical structures;\r\nincommensurate structures;\r\nmagnetic Bravais lattices;\r\nmagnetic anisotropy energy;\r\nmagnetic birefringence;\r\nmagnetic fields;\r\nmagnetic induction;\r\nmagnetic lattices;\r\nmagnetic point groups;\r\nmagnetic space groups;\r\nmagnetic susceptibility;\r\nmagnetic symmetry;\r\nmagnetoelastic energy;\r\nmagnetoelectric effect;\r\nmagnetostriction;\r\nparamagnets;\r\nphase transitions;\r\npiezomagnetic effect;\r\nrelativistic interactions;\r\nreorientation transitions;\r\nspin flip;\r\nspin flop;\r\nspontaneous magnetization;\r\nspontaneous magnetostriction;\r\ntime inversion;\r\ntwin domains;\r\nuniaxial antiferromagnets;\r\nuniaxial ferromagnets","PeriodicalId":338076,"journal":{"name":"International Tables for Crystallography","volume":"545 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Tables for Crystallography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/97809553602060000904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This chapter gives a short review of the structure and some properties of magnetic substances that depend mainly on the symmetry of these substances. Aspects related to the magnetic symmetry receive the most emphasis. The magnetic symmetry takes into account the fact that it is necessary to consider time inversion in addition to the usual spatial transformations in order to describe the invariance of the thermodynamic equilibrium states of a body. The first part of the chapter is devoted to a brief classification of disordered and ordered magnetics. The classification of ferromagnets according to the type of the magnetic structure is given in Section 1.5.1.2.1. In Section 1.5.1.2.2, the antiferromagnets are classified by the types of their magnetic structures: collinear, weakly non-collinear and strongly non-collinear antiferromagnets. Incommensurate structures are briefly mentioned in Section 1.5.1.2.3. Section 1.5.2 is devoted to magnetic symmetry. Different types of magnetic point (Section 1.5.2.1) and magnetic space (Section 1.5.2.3) groups are defined. The 22 magnetic Bravais lattices are displayed in Section 1.5.2.2. The transition from the paramagnetic state into the magnetically ordered state entails a transition from one magnetic group into another. These transitions are considered in Section 1.5.3. The domain structure of ferromagnets and antiferromagnets is considered in Section 1.5.4, where 180° and T-domains are described. Non-collinear antiferromagnetic structures (weakly ferromagnetic, non-collinear and non-coplanar antiferromagnetic structures) are described in Section 1.5.5. Besides the magnetic phase transition from the disordered into the ordered state, there exist transitions from one magnetic structure into another. Those of these that are obtained by a rotation of the ferromagnetic or antiferromagnetic vector relative to the crystallographic axis are called reorientation transitions and are analysed in Section 1.5.6. Sections 1.5.7 and 1.5.8 are devoted to phenomena that can be (and were) predicted only on the basis of magnetic symmetry. These are piezomagnetism (Section 1.5.7) and the magnetoelectric effect (Section 1.5.8). In Section 1.5.9, the magnetostriction in ferromagnets is briefly discussed. Keywords: Bravais lattices; Gaussian system of units; Landau theory; S-domains; SI units; angular phase; anisotropy energy; antiferromagnetic ferroelectrics; antiferromagnetic helical structures; antiferromagnetic phases; antiferromagnetic structures; antiferromagnetic vectors; antiferromagnets; diamagnets; domains; easy-axis magnetics; easy-plane magnetics; exchange energy; exchange symmetry; ferrimagnets; ferroelectric antiferromagnets; ferroelectric materials; ferroic domains; ferromagnetic ferroelectrics; ferromagnetic materials; ferromagnetic vectors; ferromagnetism; ferromagnets; helical structures; incommensurate structures; magnetic Bravais lattices; magnetic anisotropy energy; magnetic birefringence; magnetic fields; magnetic induction; magnetic lattices; magnetic point groups; magnetic space groups; magnetic susceptibility; magnetic symmetry; magnetoelastic energy; magnetoelectric effect; magnetostriction; paramagnets; phase transitions; piezomagnetic effect; relativistic interactions; reorientation transitions; spin flip; spin flop; spontaneous magnetization; spontaneous magnetostriction; time inversion; twin domains; uniaxial antiferromagnets; uniaxial ferromagnets
1.5磁性能
本章简要回顾了磁性物质的结构和一些性质,这些性质主要取决于磁性物质的对称性。与磁对称有关的方面得到了最多的强调。磁对称考虑了这样一个事实,即为了描述一个物体的热力学平衡状态的不变性,除了通常的空间变换之外,还需要考虑时间反演。本章的第一部分是对无序磁和有序磁的简单分类。根据磁性结构类型对铁磁体的分类见第1.5.1.2.1节。在第1.5.1.2.2节中,反铁磁体按其磁性结构类型进行分类:共线、弱非共线和强非共线反铁磁体。第1.5.1.2.3节简要地提到了不相称的结构。第1.5.2节专门讨论磁对称性。定义不同类型的磁点(第1.5.2.1节)和磁空间(第1.5.2.3节)群。22个磁性Bravais晶格在1.5.2.2节中显示。顺磁态向磁有序态的转变需要从一个磁群向另一个磁群的转变。第1.5.3节讨论了这些转换。第1.5.4节讨论了铁磁体和反铁磁体的畴结构,其中描述了180°畴和t畴。非共线反铁磁结构(弱铁磁结构、非共线反铁磁结构和非共面反铁磁结构)将在1.5.5节中描述。除了从无序态到有序态的磁相转变外,还存在从一种磁性结构到另一种磁性结构的转变。通过相对于结晶轴的铁磁或反铁磁矢量的旋转获得的这些被称为重定向跃迁,并在第1.5.6节中进行了分析。第1.5.7节和第1.5.8节专门讨论了只能(和曾经)根据磁对称性来预测的现象。它们是压磁性(第1.5.7节)和磁电效应(第1.5.8节)。在第1.5.9节中,简要讨论了铁磁体中的磁致伸缩。关键词:Bravais晶格,高斯单位制,朗道理论,s畴,SI单位,角相,各向异性能量,反铁磁铁电体,反铁磁螺旋结构,反铁磁相,反铁磁结构,反铁磁矢量,反铁磁体,反磁体,畴,易轴磁体,易平面磁体,交换能,交换对称,铁磁体,铁电反铁磁体,铁电材料,铁畴,铁磁铁电体、铁磁材料、铁磁矢量、铁磁性、铁磁体、螺旋结构、不相称结构、磁布拉瓦伊晶格、磁各向异性能、磁双折射、磁场、磁感应、磁晶格、磁点群、磁空间群、磁化率、磁对称、磁弹性能、磁电效应、磁致伸缩、顺磁体、相变、压磁效应、相对论相互作用;重定向跃迁;自旋翻转;自旋翻转;自发磁化;自发磁致伸缩;时间反转;孪畴;单轴反铁磁体;单轴铁磁体
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信