Clustering news articles using efficient similarity measure and N-grams

Desmond Bala Bisandu, R. Prasad, Musa Muhammad Liman
{"title":"Clustering news articles using efficient similarity measure and N-grams","authors":"Desmond Bala Bisandu, R. Prasad, Musa Muhammad Liman","doi":"10.1504/IJKEDM.2018.10016103","DOIUrl":null,"url":null,"abstract":"The rapid progress of information technology and web makes it easier to store huge amount of collected textual information, e.g., blogs, news articles, e-mail messages, reviews and forum postings. The growing size of textual dataset with high-dimensions and natural language pose a big challenge making it hard for such information to be categorised efficiently. Document clustering is an automatic unsupervised machine learning technique that aimed at grouping related set of items into clusters or subsets. The target is creating clusters with high internal coherence, but different from each other substantially. This paper presents a new document clustering technique using N-grams and efficient similarity measure known as 'improved sqrt-cosine similarity measure'. Comprehensive experiments are conducted to evaluate our proposed clustering technique and compared with an existing method. The results of the experiments show that our proposed clustering technique outperforms the existing techniques.","PeriodicalId":386151,"journal":{"name":"Int. J. Knowl. Eng. Data Min.","volume":"519 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Eng. Data Min.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKEDM.2018.10016103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The rapid progress of information technology and web makes it easier to store huge amount of collected textual information, e.g., blogs, news articles, e-mail messages, reviews and forum postings. The growing size of textual dataset with high-dimensions and natural language pose a big challenge making it hard for such information to be categorised efficiently. Document clustering is an automatic unsupervised machine learning technique that aimed at grouping related set of items into clusters or subsets. The target is creating clusters with high internal coherence, but different from each other substantially. This paper presents a new document clustering technique using N-grams and efficient similarity measure known as 'improved sqrt-cosine similarity measure'. Comprehensive experiments are conducted to evaluate our proposed clustering technique and compared with an existing method. The results of the experiments show that our proposed clustering technique outperforms the existing techniques.
使用有效的相似性度量和N-grams聚类新闻文章
信息技术和网络的飞速发展使得大量收集的文字信息(如博客、新闻文章、电子邮件、评论和论坛帖子)更容易存储。随着高维自然语言文本数据集规模的不断扩大,对此类信息的有效分类难度加大。文档聚类是一种自动无监督机器学习技术,旨在将相关的项目集合分组到聚类或子集中。目标是创建具有高内部一致性,但彼此实质上不同的集群。本文提出了一种新的基于N-grams和高效相似度度量的文档聚类技术,称为“改进的sqrt-cos相似度度量”。对我们提出的聚类方法进行了综合实验,并与现有方法进行了比较。实验结果表明,我们提出的聚类技术优于现有的聚类技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信