{"title":"MOAFL: Potential Seed Selection with Multi-Objective Particle Swarm Optimization","authors":"Jinman Jiang, Rui Ma, Xiajing Wang, Jinyuan He, Donghai Tian, Jiating Li","doi":"10.1145/3507971.3507977","DOIUrl":null,"url":null,"abstract":"Fuzzing has become one of the most widely used technology for discovering software vulnerabilities thanks to its effectiveness. However, even the state-of-the-art fuzzers are not very efficient at identifying promising seeds. Coverage-guided fuzzers like American Fuzzy Lop (AFL) usually employ single criterion to evaluate the quality of seeds that may pass up potential seeds. To overcome this problem, we design a potential seed selection scheme, called MOAFL. The key idea is to measure seed potential utilizing multiple objectives and prioritize promising seeds that are more likely to generate interesting seeds via mutation. More specifically, MOAFL leverages lightweight swarm intelligence techniques like Multi-Objective Particle Swarm Optimization (MOPSO) to handle multi-criteria seed selection, which allows MOAFL to choose promising seeds effectively. We implement this scheme based on AFL and our evaluations on LAVA-M dataset and 7 popular real-world programs demonstrate that MOAFL significantly increases the code coverage over AFL.","PeriodicalId":439757,"journal":{"name":"Proceedings of the 7th International Conference on Communication and Information Processing","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Communication and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3507971.3507977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Fuzzing has become one of the most widely used technology for discovering software vulnerabilities thanks to its effectiveness. However, even the state-of-the-art fuzzers are not very efficient at identifying promising seeds. Coverage-guided fuzzers like American Fuzzy Lop (AFL) usually employ single criterion to evaluate the quality of seeds that may pass up potential seeds. To overcome this problem, we design a potential seed selection scheme, called MOAFL. The key idea is to measure seed potential utilizing multiple objectives and prioritize promising seeds that are more likely to generate interesting seeds via mutation. More specifically, MOAFL leverages lightweight swarm intelligence techniques like Multi-Objective Particle Swarm Optimization (MOPSO) to handle multi-criteria seed selection, which allows MOAFL to choose promising seeds effectively. We implement this scheme based on AFL and our evaluations on LAVA-M dataset and 7 popular real-world programs demonstrate that MOAFL significantly increases the code coverage over AFL.